Maximum-Entropy Density Estimation for MRI Stochastic Surrogate Models

被引:3
作者
Zhang, Zheng [1 ]
Farnoosh, Niloofar [1 ]
Klemas, Thomas [2 ]
Daniel, Luca [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Lincoln Lab, Cambridge, MA 02421 USA
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2014年 / 13卷
关键词
Density function; electromagnetics; magnetic resonance imaging (MRI); uncertainty quantification; POLYNOMIAL-CHAOS; UNCERTAINTY QUANTIFICATION; CIRCUITS;
D O I
10.1109/LAWP.2014.2349933
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stochastic spectral methods can generate accurate compact stochastic models for electromagnetic problems with material and geometric uncertainties. This letter presents an improved implementation of the maximum-entropy algorithm to compute the density function of an obtained generalized polynomial chaos expansion in magnetic resonance imaging (MRI) applications. Instead of using statistical moments, we show that the expectations of some orthonormal polynomials can be better constraints for the optimization flow. The proposed algorithm is coupled with a finite element-boundary element method (FEM-BEM) domain decomposition field solver to obtain a robust computational prototyping for MRI problems with low- and high-dimensional uncertainties.
引用
收藏
页码:1656 / 1659
页数:4
相关论文
共 21 条
[1]  
[Anonymous], ARXIV14073023
[2]   Efficient Analysis of Geometrical Uncertainty in the FDTD Method Using Polynomial Chaos With Application to Microwave Circuits [J].
Austin, Andrew C. M. ;
Sarris, Costas D. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (12) :4293-4301
[3]   Efficient computation of RCS from scatterers of uncertain shapes [J].
Chauviere, Cedric ;
Hesthaven, Jan. S. ;
Wilcox, Lucas. C. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (05) :1437-1448
[4]  
Farnoosh N, 2014, 2014 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT)
[5]   ON GENERATING ORTHOGONAL POLYNOMIALS [J].
GAUTSCHI, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03) :289-317
[6]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[7]   Reduced-Order Models for Electromagnetic Scattering Problems [J].
Hochman, Amit ;
Villena, Jorge Fernandez ;
Polimeridis, Athanasios G. ;
Silveira, Luis Miguel ;
White, Jacob K. ;
Daniel, Luca .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (06) :3150-3162
[8]  
Krishnan R, 2013, INT SYM QUAL ELECT, P572, DOI 10.1109/ISQED.2013.6523668
[9]   Asymptotic probability extraction for non-normal distributions of circuit performance [J].
Li, X ;
Le, JY ;
Gopalakrishnan, P ;
Pileggi, LT .
ICCAD-2004: INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, IEEE/ACM DIGEST OF TECHNICAL PAPERS, 2004, :2-9
[10]   Spectral characteristics of coupled resonators [J].
Mookherjea, Shayan .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (06) :1137-1145