pSIN: A scalable, Parallel algorithm for Seismic INterferometry of large-N ambient-noise data

被引:10
|
作者
Chen, Po [1 ]
Taylor, Nicholas J. [1 ]
Dueker, Ken G. [1 ]
Keifer, Ian S. [1 ]
Wilson, Andra K. [1 ]
McGuffy, Casey L. [1 ]
Novitsky, Christopher G. [1 ]
Spears, Alec J. [1 ]
Holbrook, W. Steven [1 ]
机构
[1] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
Seismic interferometry; Ambient-noise; Parallel algorithm; Message-passing interface; GREENS-FUNCTION; FIELD; DECONVOLUTION; TOMOGRAPHY; EMERGENCE; WAVES; ARRAY;
D O I
10.1016/j.cageo.2016.05.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Seismic interferometry is a technique for extracting deterministic signals (i.e., ambient-noise Green's functions) from recordings of ambient-noise wavefields through cross-correlation and other related signal processing techniques. The extracted ambient-noise Green's functions can be used in ambient noise tomography for constructing seismic structure models of the Earth's interior. The amount of calculations involved in the seismic interferometry procedure can be significant, especially for ambient noise datasets collected by large seismic sensor arrays (i.e., "large-N" data). We present an efficient parallel algorithm, named pSIN (Parallel Seismic INterferometry), for solving seismic interferometry problems on conventional distributed-memory computer clusters. The design of the algorithm is based on a two-dimensional partition of the ambient-noise data recorded by a seismic sensor array. We pay special attention to the balance of the computational load, inter-process communication overhead and memory usage across all MPI processes and we minimize the total number of I/O operations. We have tested the algorithm using a real ambient-noise dataset and obtained a significant amount of savings in processing time. Scaling tests have shown excellent strong scalability from 80 cores to over 2000 cores. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 6 条
  • [1] Ambient seismic noise analysis of LARGE-N data for mineral exploration in the Central Erzgebirge, Germany
    Ryberg, Trond
    Kirsch, Moritz
    Haberland, Christian
    Tolosana-Delgado, Raimon
    Viezzoli, Andrea
    Gloaguen, Richard
    SOLID EARTH, 2022, 13 (03) : 519 - 533
  • [2] Recovery of P Waves from Ambient-Noise Interferometry of Borehole Seismic Data around the San Andreas Fault in Central California
    Mosher, Stephen Glenn
    Audet, Pascal
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2018, 108 (01) : 51 - 65
  • [3] Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling
    Cao, Haitao
    Apatay, Erdi
    Crane, Garvie
    Wu, Boming
    Gao, Ke
    Askari, Roohollah
    GEOSCIENCES, 2022, 12 (07)
  • [4] Upper-Crustal Shear-Wave Velocity Structure of the South-Central Rio Grande Rift above the Socorro Magma Body Imaged with Ambient Noise by the Large-N Sevilleta Seismic Array
    Ranasinghe, N. R.
    Worthington, L. L.
    Jiang, C.
    Schmandt, B.
    Finlay, T. S.
    Bilek, S. L.
    Aster, R. C.
    SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (05) : 1708 - 1719
  • [5] Surface wave tomography on a large-scale seismic array combining ambient noise and teleseismic earthquake data
    Yang, Yingjie
    Shen, Weisen
    Ritzwoller, Michael H.
    EARTHQUAKE SCIENCE, 2011, 24 (01) : 55 - 64
  • [6] Surface wave tomography on a large-scale seismic array combining ambient noise and teleseismic earthquake data
    Michael H.Ritzwoller
    Earthquake Science, 2011, (01) : 55 - 64