Genome-wide identification and expression analysis of the AhTrx family genes in peanut

被引:0
|
作者
Li, X. [1 ]
Su, G. J. [1 ]
Ntambiyukuri, A. [1 ]
Tong, B. [1 ,2 ,3 ]
Zhan, J. [1 ,2 ,3 ]
Wang, A. Q. [1 ,2 ,3 ]
Xiao, D. [1 ,2 ,3 ]
He, L. F. [1 ,2 ,3 ]
机构
[1] Guangxi Univ, Coll Agr, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Agroenvironm & Agroprod Safety, Nanning 530004, Peoples R China
[3] Guangxi Coll & Univ Key Lab Crop Cultivat & Tilla, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
aluminium stress; Arachis hypogea; chromosomal localization; expression analysis; gene structure; peanut; thioredoxins; PROGRAMMED CELL-DEATH; REDOX REGULATION; THIOREDOXIN Z; PLANT-GROWTH; ARABIDOPSIS; GLUTAREDOXINS; MITOCHONDRIA; BIOGENESIS; INTERACTS; PROTEINS;
D O I
10.32615/bp.2021.077
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Thioredoxins (Trx) are small multifunctional redox proteins that contain thioredoxin conserved domain and active site WCXXC. The Trx family has an important role in multiple processes, including electron transport, seed germination, redox regulation, biotic and abiotic stresses resistance, etc. Although Trx genes have been extensively characterized in some plants, they have not been reported in peanut until now. The identification of AhTrx genes provides potential candidate genes for studying their effects and regulatory mechanisms in peanut (Arachis hypogaea L.) growth and development, especially under aluminium (Al) stress. It is also helpful to further analyze the Al resistance pathway in plants. Seventy AhTrx genes were identified using a genome-wide search method and conservative domain analysis. Then the basic physicochemical properties, phylogenetic relationship, gene structure, chromosomal localization, and promoter prediction were studied by the bioinformatic methods. Furthermore, the expressions of AhTrx genes under different Al treatment times in two peanut cultivars were tested using a real-time quantitative polymerase chain reaction. Seventy AhTrx genes were identified and characterized. Phylogenetic tree analysis showed that all AhTrx members could be classified into 9 groups with different conserved domains. Motif 1 was found to exist in every sequence, with an active site. Furthermore, the gene structures showed that the AhTrx family was complicated and changeable during evolution. The chromosomal localization indicated that the distribution and density of the Trx family on 20 peanut chromosomes were uneven. Predictive promoter analysis indicated that AhTrx proteins might play a role in phytohormones synthesis and stress response. Finally, the expression patterns of the AhTrx genes showed that every gene was differently expressed under Al treatment in different peanut cultivars, some were obvious, others had no significant difference, some were at a high level, while others were at a low level. This study systematically identifies the Trx gene family in peanut, providing some candidates for further study on its effects and regulatory mechanism under Al stress in peanut.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 50 条
  • [41] Genome-wide Identification and Expression Analysis of RcMYB Genes in Rhodiola crenulata
    Xu, Binjie
    Chen, Bang
    Qi, Xiaoli
    Liu, Shunli
    Zhao, Yibing
    Tang, Ce
    Meng, Xianli
    FRONTIERS IN GENETICS, 2022, 13
  • [42] Genome-wide identification and expression analysis of lipoxygenase genes in Tartary buckwheat
    Ji, Qiqi
    Zhang, Tianyuan
    Zhang, Dong
    Lv, Shiming
    Tan, Aijuan
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2020, 34 (01) : 273 - 286
  • [43] Genome-Wide Identification and Expression Analysis of SNARE Genes in Brassica napus
    Xu, Jing
    Zhao, Xu
    Bao, Jiandong
    Shan, Yanan
    Zhang, Mengjiao
    Shen, Yanan
    Abubakar, Yakubu Saddeeq
    Lu, Guodong
    Wang, Zonghua
    Wang, Airong
    PLANTS-BASEL, 2022, 11 (05):
  • [44] Genome-Wide Identification and Expression Analysis of the REF Genes in 17 Species
    Fang, Jinkai
    Ma, Chi
    Lin, Yu
    Yin, Junjun
    Zhu, Lijuan
    Yuan, Zhineng
    Zhang, Dan
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2024, 46 (11) : 11797 - 11816
  • [45] Genome-wide identification and expression analysis of the expansin gene family in tomato
    Yongen Lu
    Lifeng Liu
    Xin Wang
    Zhihui Han
    Bo Ouyang
    Junhong Zhang
    Hanxia Li
    Molecular Genetics and Genomics, 2016, 291 : 597 - 608
  • [46] Genome-wide identification and expression analysis of asparagine synthetase family in apple
    YUAN Xi-sen
    YU Zi-peng
    LIU Lin
    XU Yang
    ZHANG Lei
    HAN De-guo
    ZHANG Shi-zhong
    JournalofIntegrativeAgriculture, 2020, 19 (05) : 1261 - 1273
  • [47] GENOME-WIDE IDENTIFICATION AND EXPRESSION ANALYSIS OF AAO GENE FAMILY IN MAIZE
    Wu, De-Gong
    Wang, Yong
    Huang, Shou-Cheng
    Zhan, Qiu-Wen
    Yu, Hai-Bing
    Hunag, Bao-Hong
    Cheng, Xin-Xin
    Li, Wen-Yang
    Du, Jun-Li
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (01) : 181 - 190
  • [48] Genome-wide identification and expression analysis of Raffinose synthetase family in cotton
    Ruifeng Cui
    Xiaoge Wang
    Waqar Afzal Malik
    Xuke Lu
    Xiugui Chen
    Delong Wang
    Junjuan Wang
    Shuai Wang
    Chao Chen
    Lixue Guo
    Quanjia Chen
    Wuwei Ye
    BMC Bioinformatics, 22
  • [49] Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat
    Yanlin Yang
    Tian Xu
    Honggang Wang
    Deshun Feng
    Molecular Biology Reports, 2021, 48 : 1269 - 1279
  • [50] Genome-wide identification and expression analysis of the AAAP family inFragaria vesca
    Liang, Wenwei
    Ling, Lei
    Wang, Mingjie
    Du, Binghao
    Duan, Yadong
    Song, Penghui
    Zhang, Lili
    Li, Pengju
    Ma, Jun
    Wu, Liren
    Guo, Changhong
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2020, 34 (01) : 790 - 799