Genome-wide identification and expression analysis of the AhTrx family genes in peanut

被引:0
|
作者
Li, X. [1 ]
Su, G. J. [1 ]
Ntambiyukuri, A. [1 ]
Tong, B. [1 ,2 ,3 ]
Zhan, J. [1 ,2 ,3 ]
Wang, A. Q. [1 ,2 ,3 ]
Xiao, D. [1 ,2 ,3 ]
He, L. F. [1 ,2 ,3 ]
机构
[1] Guangxi Univ, Coll Agr, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Agroenvironm & Agroprod Safety, Nanning 530004, Peoples R China
[3] Guangxi Coll & Univ Key Lab Crop Cultivat & Tilla, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
aluminium stress; Arachis hypogea; chromosomal localization; expression analysis; gene structure; peanut; thioredoxins; PROGRAMMED CELL-DEATH; REDOX REGULATION; THIOREDOXIN Z; PLANT-GROWTH; ARABIDOPSIS; GLUTAREDOXINS; MITOCHONDRIA; BIOGENESIS; INTERACTS; PROTEINS;
D O I
10.32615/bp.2021.077
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Thioredoxins (Trx) are small multifunctional redox proteins that contain thioredoxin conserved domain and active site WCXXC. The Trx family has an important role in multiple processes, including electron transport, seed germination, redox regulation, biotic and abiotic stresses resistance, etc. Although Trx genes have been extensively characterized in some plants, they have not been reported in peanut until now. The identification of AhTrx genes provides potential candidate genes for studying their effects and regulatory mechanisms in peanut (Arachis hypogaea L.) growth and development, especially under aluminium (Al) stress. It is also helpful to further analyze the Al resistance pathway in plants. Seventy AhTrx genes were identified using a genome-wide search method and conservative domain analysis. Then the basic physicochemical properties, phylogenetic relationship, gene structure, chromosomal localization, and promoter prediction were studied by the bioinformatic methods. Furthermore, the expressions of AhTrx genes under different Al treatment times in two peanut cultivars were tested using a real-time quantitative polymerase chain reaction. Seventy AhTrx genes were identified and characterized. Phylogenetic tree analysis showed that all AhTrx members could be classified into 9 groups with different conserved domains. Motif 1 was found to exist in every sequence, with an active site. Furthermore, the gene structures showed that the AhTrx family was complicated and changeable during evolution. The chromosomal localization indicated that the distribution and density of the Trx family on 20 peanut chromosomes were uneven. Predictive promoter analysis indicated that AhTrx proteins might play a role in phytohormones synthesis and stress response. Finally, the expression patterns of the AhTrx genes showed that every gene was differently expressed under Al treatment in different peanut cultivars, some were obvious, others had no significant difference, some were at a high level, while others were at a low level. This study systematically identifies the Trx gene family in peanut, providing some candidates for further study on its effects and regulatory mechanism under Al stress in peanut.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 50 条
  • [31] Genome-Wide Identification and Expression Analysis of Auxin Response Factor Gene Family in Linum usitatissimum
    Qi, Yanni
    Wang, Limin
    Li, Wenjuan
    Dang, Zhao
    Xie, Yaping
    Zhao, Wei
    Zhao, Lirong
    Li, Wen
    Yang, Chenxi
    Xu, Chenmeng
    Zhang, Jianping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)
  • [32] Genome-wide identification of peanut IGT family genes and their potential roles in the development of plant architecture
    Chu, Wen
    Zhu, Xiaofeng
    Jiang, Tao
    Wang, Song
    Ni, Wanli
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [33] Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize
    Xie, Yuting
    Gu, Yeting
    Shi, Guangping
    He, Jianliang
    Hu, Wenjing
    Zhang, Zhonghui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (05)
  • [34] Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis
    Lu, Haifei
    Xu, Jianmin
    Li, Guangyou
    Zhong, Tailin
    Chen, Danwei
    Lv, Jiabin
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [35] Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis
    Liu, Hui
    Deng, Zhi
    Chen, Jiangshu
    Wang, Sen
    Hao, Lili
    Li, Dejun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 105 : 90 - 101
  • [36] Genome-Wide Identification and Expression Analysis of the Metacaspase Gene Family in Gossypium Species
    Fan, Senmiao
    Liu, Aiying
    Zhang, Zhen
    Zou, Xianyan
    Jiang, Xiao
    Huang, Jinyong
    Fan, Liqiang
    Zhang, Zhibin
    Deng, Xiaoying
    Ge, Qun
    Gong, Wankui
    Li, Junwen
    Gong, Juwu
    Shi, Yuzhen
    Lei, Kang
    Zhang, Shuya
    Jia, Tingting
    Zhang, Lipeng
    Yuan, Youlu
    Shang, Haihong
    GENES, 2019, 10 (07)
  • [37] Genome-wide Identification, Classification, Expression and Duplication Analysis of GRAS Family Genes in Juglans regia L.
    Quan, Shaowen
    Niu, Jianxin
    Zhou, Li
    Xu, Hang
    Ma, Li
    Qin, Yang
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] Genome-Wide Identification and Expression Profile Analysis of WRKY Family Genes in the Autopolyploid Saccharum spontaneum
    Li, Zhen
    Hua, Xiuting
    Zhong, Weiming
    Yuan, Yuan
    Wang, Yongjun
    Wang, Zhengchao
    Ming, Ray
    Zhang, Jisen
    PLANT AND CELL PHYSIOLOGY, 2020, 61 (03) : 616 - 630
  • [39] Genome-wide identification, phylogenetic and expression pattern analysis of GATA family genes in Brassica napus
    Zhu, Weizhuo
    Guo, Yiyi
    Chen, Yeke
    Wu, Dezhi
    Jiang, Lixi
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [40] Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Three Orchids
    Zhao, Xuewei
    Zhang, Mengmeng
    He, Xin
    Zheng, Qinyao
    Huang, Ye
    Li, Yuanyuan
    Ahmad, Sagheer
    Liu, Dingkun
    Lan, Siren
    Liu, Zhongjian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)