Genome-wide identification and expression analysis of the AhTrx family genes in peanut

被引:0
|
作者
Li, X. [1 ]
Su, G. J. [1 ]
Ntambiyukuri, A. [1 ]
Tong, B. [1 ,2 ,3 ]
Zhan, J. [1 ,2 ,3 ]
Wang, A. Q. [1 ,2 ,3 ]
Xiao, D. [1 ,2 ,3 ]
He, L. F. [1 ,2 ,3 ]
机构
[1] Guangxi Univ, Coll Agr, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Agroenvironm & Agroprod Safety, Nanning 530004, Peoples R China
[3] Guangxi Coll & Univ Key Lab Crop Cultivat & Tilla, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
aluminium stress; Arachis hypogea; chromosomal localization; expression analysis; gene structure; peanut; thioredoxins; PROGRAMMED CELL-DEATH; REDOX REGULATION; THIOREDOXIN Z; PLANT-GROWTH; ARABIDOPSIS; GLUTAREDOXINS; MITOCHONDRIA; BIOGENESIS; INTERACTS; PROTEINS;
D O I
10.32615/bp.2021.077
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Thioredoxins (Trx) are small multifunctional redox proteins that contain thioredoxin conserved domain and active site WCXXC. The Trx family has an important role in multiple processes, including electron transport, seed germination, redox regulation, biotic and abiotic stresses resistance, etc. Although Trx genes have been extensively characterized in some plants, they have not been reported in peanut until now. The identification of AhTrx genes provides potential candidate genes for studying their effects and regulatory mechanisms in peanut (Arachis hypogaea L.) growth and development, especially under aluminium (Al) stress. It is also helpful to further analyze the Al resistance pathway in plants. Seventy AhTrx genes were identified using a genome-wide search method and conservative domain analysis. Then the basic physicochemical properties, phylogenetic relationship, gene structure, chromosomal localization, and promoter prediction were studied by the bioinformatic methods. Furthermore, the expressions of AhTrx genes under different Al treatment times in two peanut cultivars were tested using a real-time quantitative polymerase chain reaction. Seventy AhTrx genes were identified and characterized. Phylogenetic tree analysis showed that all AhTrx members could be classified into 9 groups with different conserved domains. Motif 1 was found to exist in every sequence, with an active site. Furthermore, the gene structures showed that the AhTrx family was complicated and changeable during evolution. The chromosomal localization indicated that the distribution and density of the Trx family on 20 peanut chromosomes were uneven. Predictive promoter analysis indicated that AhTrx proteins might play a role in phytohormones synthesis and stress response. Finally, the expression patterns of the AhTrx genes showed that every gene was differently expressed under Al treatment in different peanut cultivars, some were obvious, others had no significant difference, some were at a high level, while others were at a low level. This study systematically identifies the Trx gene family in peanut, providing some candidates for further study on its effects and regulatory mechanism under Al stress in peanut.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 50 条
  • [1] Genome-wide identification and expression analysis of DREB family genes in cotton
    Jiuchang Su
    Shanglin Song
    Yiting Wang
    Yunpeng Zeng
    Tianyu Dong
    Xiaoyang Ge
    Hongying Duan
    BMC Plant Biology, 23
  • [2] Genome-wide identification and expression analysis of DREB family genes in cotton
    Su, Jiuchang
    Song, Shanglin
    Wang, Yiting
    Zeng, Yunpeng
    Dong, Tianyu
    Ge, Xiaoyang
    Duan, Hongying
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [3] The myosin family genes in soybean: Genome-wide identification and expression analysis
    Duan, Xiangbo
    Zhang, Ke
    Duanmu, Huizi
    Yu, Yang
    SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 160 : 338 - 346
  • [4] GENOME-WIDE IDENTIFICATION AND EXPRESSION PATTERN ANALYSIS OF DHN FAMILY GENES IN MAIZE
    Gao, Chunyan
    Cao, Xiaohan
    Shen, Jiawei
    Wang, Xv
    Jiao, Xinyue
    Gong, Yanting
    Peng, Xinyue
    Ren, Liping
    PAKISTAN JOURNAL OF BOTANY, 2024, 56 (06) : 2373 - 2380
  • [5] Genome-Wide Identification and Expression Analysis of bZIP Family Genes in Stevia rebaudiana
    Wu, Mengyang
    Chen, Jinsong
    Tang, Weilin
    Jiang, Yijie
    Hu, Zhaoyong
    Xu, Dongbei
    Hou, Kai
    Chen, Yinyin
    Wu, Wei
    GENES, 2023, 14 (10)
  • [6] Genome-Wide Identification and Expression Analysis of the Ammonium Transporter Family Genes in Soybean
    Yang, Wei
    Dong, Xiaoxu
    Yuan, Zhanxin
    Zhang, Yan
    Li, Xia
    Wang, Youning
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [7] Genome-wide identification and expression analysis of TCP family genes in Catharanthus roseus
    Hao, Juan
    Zheng, Lijun
    Han, Yidie
    Zhang, Hongshan
    Hou, Kailin
    Liang, Xueshuang
    Chen, Cheng
    Wang, Zhijing
    Qian, Jiayi
    Lin, Zhihao
    Wang, Zitong
    Zeng, Houqing
    Shen, Chenjia
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [8] Genome-wide identification, phylogenetic analysis, and expression profiling of the BBX family genes in pear
    Zou, Zhiyan
    Wang, Rihong
    Wang, Ran
    Yang, Shaolan
    Yang, Yingjie
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2018, 93 (01): : 37 - 50
  • [9] Genome-Wide Identification and Expression Analysis of GATA Family Genes in Dimocarpus longan Lour
    Zheng, Kehui
    Lu, Jiayue
    He, Xinyu
    Lan, Shuoxian
    Zhai, Tingkai
    Cao, Shijiang
    Lin, Yuling
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [10] Genome-wide identification, characterization, and expression analysis of MIPS family genes in legume species
    Jacob, Feba
    Hamid, Rasmieh
    Ghorbanzadeh, Zahra
    Valsalan, Ravisankar
    Ajinath, Lavale Shivaji
    Mathew, Deepu
    BMC GENOMICS, 2024, 25 (01):