Greedy splitting algorithms for approximating multiway partition problems

被引:44
作者
Zhao, L
Nagamochi, H
Ibaraki, T
机构
[1] Utsunomiya Univ, Fac Engn, Dept Informat Sci, Utsunomiya, Tochigi 3218585, Japan
[2] Toyohashi Univ Technol, Dept Informat & Comp Sci, Aichi 4418580, Japan
[3] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto, Japan
关键词
approximation algorithm; hypergraph partition; k-way cut; multiterminal cut; multiway partition problem; submodular function;
D O I
10.1007/s10107-004-0510-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a system (V, T, f, k), where V is a finite set, T subset of or equal to V, f : 2(V) --> R is a submodular function and k greater than or equal to 2 is an integer, the general multiway partition problem (MPP) asks to find a k-partition P = {V-1, V-2,..., V-k} of V that satisfies V-i boolean AND T not equal empty set for all i and minimizes f (V-1) + f (V-2)+...+ f (V-k), where P is a k-partition of V if ( i) V-i not equal empty set, (ii) V-i boolean AND V-j = empty set, i not equal j, and (iii) V-1 boolean OR V-2 boolean OR ... V-k = V hold. MPP formulation captures a generalization in submodular systems of many NP-hard problems such as k-way cut, multiterminal cut, target split and their generalizations in hypergraphs. This paper presents a simple and unified framework for developing and analyzing approximation algorithms for various MPPs.
引用
收藏
页码:167 / 183
页数:17
相关论文
共 32 条