Solar large-scale magnetic field and cycle patterns in solar dynamo

被引:21
|
作者
Obridko, V. N. [1 ]
Pipin, V. V. [2 ]
Sokoloff, D. [1 ,3 ,4 ]
Shibalova, A. S. [1 ,3 ,4 ]
机构
[1] IZMIRAN, 4 Kaluzhskoe Shosse, Moscow 108840, Russia
[2] Russian Acad Sci, Inst Solar Terr Phys, Irkutsk 664033, Russia
[3] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia
[4] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
关键词
Sun: magnetic fields; Sun: oscillations; sunspots; TORSIONAL OSCILLATIONS; HEMISPHERIC-ASYMMETRY; GRAND-MINIMA; FLUCTUATIONS; EVOLUTION; SUN; STRENGTH; ALPHA; MODES; INSTABILITIES;
D O I
10.1093/mnras/stab1062
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compare spectra of the zonal harmonics of the large-scale magnetic field of the Sun using observation results and solar dynamo models. The main solar activity cycle as recorded in these tracers is a much more complicated phenomenon than the eigen solution of solar dynamo equations with the growth saturated by a back reaction of the dynamo-driven magnetic field on solar hydrodynamics. The nominal 11(22)-yr cycle as recorded in each mode has a specific phase shift varying from cycle to cycle; the actual length of the cycle varies from one cycle to another and from tracer to tracer. Both the observation and the dynamo model show an exceptional role of the axisymmetric l(5) mode. Its origin seems to be readily connected with the formation and evolution of sunspots on the solar surface. The results of observations and dynamo models show a good agreement for the low l(1) and l(3) modes. The results for these modes do not differ significantly for the axisymmetric and non-axisymmetric models. Our findings support the idea that the sources of the solar dynamo arise as a result of both the distributed dynamo processes in the bulk of the convection zone and the surface magnetic activity.
引用
收藏
页码:4990 / 5000
页数:11
相关论文
共 50 条
  • [1] The extended solar cycle and asymmetry of the large-scale magnetic field
    Obridko, V. N.
    Shibalova, A. S.
    Sokoloff, D. D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (01) : 982 - 990
  • [2] Predicting solar surface large-scale magnetic field of Cycle 24
    Jiang, Jie
    Cao, Jinbin
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2018, 176 : 34 - 41
  • [3] Large-scale solar magnetic field mapping: I
    Schatten, Kenneth H.
    SPRINGERPLUS, 2013, 2 : 1 - 23
  • [4] EFFECTS OF THE SCATTER IN SUNSPOT GROUP TILT ANGLES ON THE LARGE-SCALE MAGNETIC FIELD AT THE SOLAR SURFACE
    Jiang, J.
    Cameron, R. H.
    Schuessler, M.
    ASTROPHYSICAL JOURNAL, 2014, 791 (01)
  • [5] Zonal harmonics of solar magnetic field for solar cycle forecast
    Obridko, V. N.
    Sokoloff, D. D.
    Pipin, V. V.
    Shibalva, A. S.
    Livshits, I. M.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2021, 225
  • [6] Cyclic variations in the main components of the solar large-scale magnetic field
    Obridko, V. N.
    Sokoloff, D. D.
    Shelting, B. D.
    Shibalova, A. S.
    Livshits, I. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (04) : 5582 - 5591
  • [7] A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers
    Kiuchi, Kenta
    Reboul-Salze, Alexis
    Shibata, Masaru
    Sekiguchi, Yuichiro
    NATURE ASTRONOMY, 2024, 8 (3) : 298 - 307
  • [8] EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO
    Pipin, V. V.
    Kosovichev, A. G.
    ASTROPHYSICAL JOURNAL, 2015, 813 (02)
  • [9] Large-scale solar cycle features of photospheric magnetic flux
    Song, Wenbin
    Wang, Jingxiu
    ASTROPHYSICAL JOURNAL, 2006, 643 (01) : L69 - L72
  • [10] Large-scale Magnetic Funnels in the Solar Corona
    Panasenco, Olga
    Velli, Marco
    Panasenco, Aram
    ASTROPHYSICAL JOURNAL, 2019, 873 (01)