LOW-RANK REGULARIZED JOINT SPARSITY FOR IMAGE DENOISING

被引:1
|
作者
Zha, Zhiyuan [1 ]
Wen, Bihan [1 ]
Yuan, Xin [2 ]
Zhou, Jiantao [3 ]
Zhu, Ce [4 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Nokia Bell Labs, Murray Hill, NJ 07974 USA
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Image denoising; nonlocal sparse representation; low-rank regularized joint sparsity; alternating minimization; adaptive parameter; RESTORATION; ALGORITHM; REPRESENTATION;
D O I
10.1109/ICIP42928.2021.9506726
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlocal sparse representation models such as group sparse representation (GSR), low-rankness and joint sparsity (JS) have shown great potentials in image denoising studies, by effectively exploiting image nonlocal self-similarity (NSS) property. Popular dictionary-based JS algorithms apply convex JS penalties in their objective functions, which avoid NP-hard sparse coding step, but lead to only approximately sparse representation. Such approximated JS models fail to impose low-rankness of the underlying image data, resulting in degraded quality in image restoration. To simultaneously exploit the low-rank and JS priors, we propose a novel low-rank regularized joint sparsity model, dubbed LRJS, to enhance the dependency (i.e., low-rankness) of similar patches, thus better suppress independent noise. Moreover, to make the optimization tractable and robust, an alternating minimization algorithm with an adaptive parameter adjustment strategy is developed to solve the proposed LRJS-based image denoising problem. Experimental results demonstrate that the proposed LRJS outperforms many popular or state-of-the-art denoising algorithms in terms of both objective and visual perception metrics.
引用
收藏
页码:1644 / 1648
页数:5
相关论文
共 50 条
  • [41] Hyperspectral Image Denoising Based on Superpixel Segmentation Low-Rank Matrix Approximation and Total Variation
    Behroozi, Y.
    Yazdi, M.
    Asli, A. Zolghadr
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (06) : 3372 - 3396
  • [42] Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising
    Ma, Guanqun
    Huang, Ting-Zhu
    Haung, Jie
    Zheng, Chao-Chao
    IEEE ACCESS, 2019, 7 : 79850 - 79865
  • [43] A note on patch-based low-rank minimization for fast image denoising
    Hu, Haijuan
    Froment, Jacques
    Liu, Quansheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 50 : 100 - 110
  • [44] Color Image Denoising Based on Low-rank Tensor Train
    Zhang, Yang
    Han, Zhi
    Tang, Yandong
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [45] Image Denoising Using Low-Rank Dictionary and Sparse Representation
    Li, Tao
    Wang, Weiwei
    Feng, Xiangchu
    Xu, Long
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 228 - 232
  • [46] Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank and Sparse Representations
    Zhuang, Lina
    Gao, Lianru
    Zhang, Bing
    Fu, Xiyou
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Adaptive Boosting for Image Denoising: Beyond Low-Rank Representation and Sparse Coding
    Wang, Bo
    Lu, Tao
    Xiong, Zixiang
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1400 - 1405
  • [48] Learning-based low-rank denoising
    Cammarasana, Simone
    Patane, Giuseppe
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (02) : 535 - 541
  • [49] Hyperspectral image denoising via global spatial-spectral total variation regularized nonconvex local low-rank tensor approximation
    Zeng, Haijin
    Xie, Xiaozhen
    Ning, Jifeng
    SIGNAL PROCESSING, 2021, 178
  • [50] Laplacian-Regularized Low-Rank Subspace Clustering for Hyperspectral Image Band Selection
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1723 - 1740