LOW-RANK REGULARIZED JOINT SPARSITY FOR IMAGE DENOISING

被引:1
|
作者
Zha, Zhiyuan [1 ]
Wen, Bihan [1 ]
Yuan, Xin [2 ]
Zhou, Jiantao [3 ]
Zhu, Ce [4 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Nokia Bell Labs, Murray Hill, NJ 07974 USA
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Image denoising; nonlocal sparse representation; low-rank regularized joint sparsity; alternating minimization; adaptive parameter; RESTORATION; ALGORITHM; REPRESENTATION;
D O I
10.1109/ICIP42928.2021.9506726
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlocal sparse representation models such as group sparse representation (GSR), low-rankness and joint sparsity (JS) have shown great potentials in image denoising studies, by effectively exploiting image nonlocal self-similarity (NSS) property. Popular dictionary-based JS algorithms apply convex JS penalties in their objective functions, which avoid NP-hard sparse coding step, but lead to only approximately sparse representation. Such approximated JS models fail to impose low-rankness of the underlying image data, resulting in degraded quality in image restoration. To simultaneously exploit the low-rank and JS priors, we propose a novel low-rank regularized joint sparsity model, dubbed LRJS, to enhance the dependency (i.e., low-rankness) of similar patches, thus better suppress independent noise. Moreover, to make the optimization tractable and robust, an alternating minimization algorithm with an adaptive parameter adjustment strategy is developed to solve the proposed LRJS-based image denoising problem. Experimental results demonstrate that the proposed LRJS outperforms many popular or state-of-the-art denoising algorithms in terms of both objective and visual perception metrics.
引用
收藏
页码:1644 / 1648
页数:5
相关论文
共 50 条
  • [21] Accurate Multiobjective Low-Rank and Sparse Model for Hyperspectral Image Denoising Method
    Wan, Yuting
    Ma, Ailong
    He, Wei
    Zhong, Yanfei
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 37 - 51
  • [22] Structure preserving image denoising based on low-rank reconstruction and gradient histograms
    Zhang, Mingli
    Desrosiers, Christian
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 171 : 48 - 60
  • [23] Two-Stage Image Denoising via an Enhanced Low-Rank Prior
    Fan, Linwei
    Li, Huiyu
    Shi, Miaowen
    Hua, Zhen
    Zhang, Caiming
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [24] Hyper-Laplacian Regularized Unidirectional Low-rank Tensor Recovery for Multispectral Image Denoising
    Chang, Yi
    Yan, Luxin
    Zhong, Sheng
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5901 - 5909
  • [25] Hyperspectral Image Recovery Using Nonconvex Sparsity and Low-Rank Regularizations
    Hu, Yue
    Li, Xiaodi
    Gu, Yanfeng
    Jacob, Mathews
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 532 - 545
  • [26] Hyperspectral Image Restoration Using Weighted Group Sparsity-Regularized Low-Rank Tensor Decomposition
    Chen, Yong
    He, Wei
    Yokoya, Naoto
    Huang, Ting-Zhu
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3556 - 3570
  • [27] An Image Denoising Method Based on Group Sparsity and Low Rank
    ZHAO Yu
    ZHANG Tao
    WuhanUniversityJournalofNaturalSciences, 2021, 26 (04) : 349 - 357
  • [28] Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition
    Xie, Ting
    Li, Shutao
    Sun, Bin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 44 - 56
  • [29] Spatial-Spectral Total Variation Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising
    Fan, Haiyan
    Li, Chang
    Guo, Yulan
    Kuang, Gangyao
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 6196 - 6213
  • [30] Robust Low-Rank Convolution Network for Image Denoising
    Ren, Jiahuan
    Zhang, Zhao
    Hong, Richang
    Xu, Mingliang
    Zhang, Haijun
    Zhao, Mingbo
    Wang, Meng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6211 - 6219