A spectral-spatial attention aggregation network for hyperspectral imagery classification

被引:4
|
作者
Kuang, Wenlan [1 ]
Tu, Bing [1 ,2 ]
He, Wangquan [1 ]
Zhang, Guoyun [1 ]
Peng, Yishu [1 ]
机构
[1] Hunan Inst Sci & Technol, Sch Informat Sci & Engn, Yueyang, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Cryptog & Informat Secur, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
STACKED AUTOENCODER;
D O I
10.1080/01431161.2021.1954715
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
For the classification of hyperspectral imagery (HSI), the convolutional neural network (CNN) can learn the discriminative spatial-spectral information of the image better than the traditional classification methods. However, when CNN uses the local receptive field to extract the features of HSI, it may cause the feature expression of the same pixel on the feature map to be inconsistent, and eventually cause noise in the classification results. To overcome this, we introduce the attention mechanism in the CNN model to improve the feature expressiveness. A spectral-spatial attention aggregation network (SSAAN) for HSI classification is designed, and there are two attention branches in our method. The spectral attention module with the squeeze-and-excitation (SESAM) automatically obtains the importance of each feature channel of HSI, and then enhances the useful band features and suppresses the less-useful band features according to this importance. In the spatial attention module with selective kernel (SKSAM), first, different convolution kernels of 2D-CNN are used to extract the shallow-middle-deep layer features from the principal components after dimension reduction, and the pixel spatial information from the three paths is combined and aggregated. Then, the feature maps of kernels of different sizes are aggregated according to the selection weights. Finally, the feature vectors obtained from the two branches of the spatial attention module and the spectral attention module are connected to further improve feature representation, and the classification result is obtained by the softmax function. Experimental results through three real HSI data sets show that our proposed method SSAAN achieves better performance compared to the state-of-the-art methods.
引用
收藏
页码:7551 / 7580
页数:30
相关论文
共 50 条
  • [11] Cooperative Spectral-Spatial Attention Dense Network for Hyperspectral Image Classification
    Dong, Zhimin
    Cai, Yaoming
    Cai, Zhihua
    Liu, Xiaobo
    Yang, Zhaoyu
    Zhuge, Mingchen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 866 - 870
  • [12] Spectral-Spatial Graph Attention Network for Semisupervised Hyperspectral Image Classification
    Zhao, Zhengang
    Wang, Hao
    Yu, Xianchuan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [13] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON A JOINT ATTENTION NETWORK
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Dai, Xiaobing
    Fan, Fan
    Tian, Xin
    Ma, Jiayi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 413 - 416
  • [14] A Deep Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15393 - 15406
  • [15] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [16] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [17] Hyperspectral Image Classification Based on Spectral-Spatial Attention Tensor Network
    Zhang, Wei-Tao
    Li, Yi-Bang
    Liu, Lu
    Bai, Yv
    Cui, Jian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [18] Spectral-Spatial Large Kernel Attention Network for Hyperspectral Image Classification
    Wu, Chunran
    Tong, Lei
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [19] Spectral-spatial classification of hyperspectral imagery with cooperative game
    Zhao, Ji
    Zhong, Yanfei
    Jia, Tianyi
    Wang, Xinyu
    Xu, Yao
    Shu, Hong
    Zhang, Liangpei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 135 : 31 - 42
  • [20] Spectral-spatial classification to pattern recognition of hyperspectral imagery
    Su, Tung-Ching
    FOURTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2012), 2012, 8334