Rolling Symmetric Spaces

被引:3
|
作者
Krakowski, Krzysztof A. [1 ,2 ]
Machado, Luis [1 ,3 ]
Leite, Fatima Silva [1 ,4 ]
机构
[1] Univ Coimbra, Inst Syst & Robot, P-3030290 Coimbra, Portugal
[2] Cardinal Stefan Wyszynski Univ, Fac Math & Nat Sci, PL-01815 Warsaw, Poland
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
来源
GEOMETRIC SCIENCE OF INFORMATION, GSI 2015 | 2015年 / 9389卷
关键词
Rolling; Isometry; Grassmann manifold; Symmetric spaces; Lie algebra; CURVES;
D O I
10.1007/978-3-319-25040-3_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Riemannian symmetric spaces play an important role in many areas that are interrelated to information geometry. For instance, in image processing one of the most elementary tasks is image interpolation. Since a set of images may be represented by a point in the Grassmann manifold, image interpolation can be formulated as an interpolation problem on that symmetric space. It turns out that rolling motions, subject to nonholonomic constraints of no-slip and no-twist, provide efficient algorithms to generate interpolating curves on certain Riemannian manifolds, in particular on symmetric spaces. The main goal of this paper is to study rolling motions on symmetric spaces. It is shown that the natural decomposition of the Lie algebra associated to a symmetric space provides the structure of the kinematic equations that describe the rolling motion of that space upon its affine tangent space at a point. This generalizes what can be observed in all the particular cases that are known to the authors. Some of these cases illustrate the general results.
引用
收藏
页码:550 / 557
页数:8
相关论文
共 50 条
  • [41] Symmetric spaces with maximal projection constants
    Chalmers, BL
    Lewicki, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) : 1 - 22
  • [42] Riesz Means on Locally Symmetric Spaces
    Effie Papageorgiou
    Complex Analysis and Operator Theory, 2022, 16
  • [43] CONVOLUTION OF ORBITAL MEASURES IN SYMMETRIC SPACES
    Anchouche, Boudjemaa
    Gupta, Sanjiv Kumar
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 470 - 485
  • [44] BOTT PERIODICITY FOR INCLUSIONS OF SYMMETRIC SPACES
    Mare, Augustin-Liviu
    Quast, Peter
    DOCUMENTA MATHEMATICA, 2012, 17 : 911 - 952
  • [45] The positive maximum principle on symmetric spaces
    David Applebaum
    Trang Le Ngan
    Positivity, 2020, 24 : 1519 - 1533
  • [46] Geometry of symmetric spaces of type EVI
    Petrov, Victor A.
    Semenov, Andrei V.
    JOURNAL OF ALGEBRA, 2024, 656 : 394 - 405
  • [47] Symmetric spaces as adjoint orbits and their geometries
    Cavenaghi, Leonardo F.
    Garcia, Carolina
    Grama, Lino
    Martin, Luiz A. B. San
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (03): : 921 - 966
  • [48] Counting geodesics on compact symmetric spaces
    Seco, Lucas
    Patrao, Mauro
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (02): : 281 - 310
  • [49] Marked length rigidity for symmetric spaces
    Dal'Bo, F
    Kim, I
    COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (02) : 399 - 407
  • [50] On the volume of orbifold quotients of symmetric spaces
    Adeboye, Ilesanmi
    Wang, McKenzie
    Wei, Guofang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 71