Rolling Symmetric Spaces

被引:3
|
作者
Krakowski, Krzysztof A. [1 ,2 ]
Machado, Luis [1 ,3 ]
Leite, Fatima Silva [1 ,4 ]
机构
[1] Univ Coimbra, Inst Syst & Robot, P-3030290 Coimbra, Portugal
[2] Cardinal Stefan Wyszynski Univ, Fac Math & Nat Sci, PL-01815 Warsaw, Poland
[3] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5001801 Vila Real, Portugal
[4] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
来源
GEOMETRIC SCIENCE OF INFORMATION, GSI 2015 | 2015年 / 9389卷
关键词
Rolling; Isometry; Grassmann manifold; Symmetric spaces; Lie algebra; CURVES;
D O I
10.1007/978-3-319-25040-3_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Riemannian symmetric spaces play an important role in many areas that are interrelated to information geometry. For instance, in image processing one of the most elementary tasks is image interpolation. Since a set of images may be represented by a point in the Grassmann manifold, image interpolation can be formulated as an interpolation problem on that symmetric space. It turns out that rolling motions, subject to nonholonomic constraints of no-slip and no-twist, provide efficient algorithms to generate interpolating curves on certain Riemannian manifolds, in particular on symmetric spaces. The main goal of this paper is to study rolling motions on symmetric spaces. It is shown that the natural decomposition of the Lie algebra associated to a symmetric space provides the structure of the kinematic equations that describe the rolling motion of that space upon its affine tangent space at a point. This generalizes what can be observed in all the particular cases that are known to the authors. Some of these cases illustrate the general results.
引用
收藏
页码:550 / 557
页数:8
相关论文
共 50 条
  • [21] On convergence completeness in symmetric spaces
    Moshokoa, Seithuti P.
    QUAESTIONES MATHEMATICAE, 2008, 31 (03) : 203 - 208
  • [22] Extrinsic symplectic symmetric spaces
    Cahen, Michel
    Gutt, Simone
    Richard, Nicolas
    Schwachhoefer, Lorenz
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 409 - 425
  • [23] Isometries on Noncommutative Symmetric Spaces
    Sukochev, F. A.
    Huang, J.
    DOKLADY MATHEMATICS, 2021, 103 (01) : 54 - 56
  • [24] Stability of Compact Symmetric Spaces
    Uwe Semmelmann
    Gregor Weingart
    The Journal of Geometric Analysis, 2022, 32
  • [25] Riesz means on symmetric spaces
    Fotiadis, A.
    Papageorgiou, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)
  • [26] On geometric structure of symmetric spaces
    Ciesielski, Maciej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 98 - 125
  • [27] Generic representations for symmetric spaces
    Prasad, Dipendra
    Sakellaridis, Yiannis
    ADVANCES IN MATHEMATICS, 2019, 348 : 378 - 411
  • [28] Semisimple symplectic symmetric spaces
    Bieliavsky, P
    GEOMETRIAE DEDICATA, 1998, 73 (03) : 245 - 273
  • [29] Analysis on flat symmetric spaces
    Ben Saïd, S
    Orsted, B
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10): : 1393 - 1426
  • [30] FINITE REPRESENTABILITY OF lp-SPACES IN SYMMETRIC SPACES
    Astashkin, S. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (02) : 257 - 273