Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries

被引:60
|
作者
Cai, Yongjie [1 ]
Li, Yuanyuan [1 ]
Jin, Biyi [1 ]
Ali, Abid [1 ]
Ling, Min [1 ]
Cheng, Dangguo [1 ]
Lu, Jianguo [2 ,3 ]
Hou, Yang [1 ,2 ]
He, Qinggang [1 ,2 ]
Zhan, Xiaoli [1 ,2 ]
Chen, Fengqiu [1 ,2 ]
Zhang, Qinghua [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ningbo Res Inst, Hangzhou 315100, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; silicon anode; fluorinated binder; dual cross-linked network; emulsion polymerization; CONDUCTIVE POLYMER BINDER; NEGATIVE ELECTRODES; AMORPHOUS-SILICON; SI ANODES; ACID; FRACTURE;
D O I
10.1021/acsami.9b16387
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In next generation lithium-ion batteries (LIBs), silicon is a promising electrode material due to its surprisingly high specific capacity, but it suffers from serious volume changes during the lithiation/delithiation process which gradually lead to the destruction of the electrode structure. A novel fluorinated copolymer with three different polar groups was synthesized to overcome this problem: carboxylic acid, amide, and fluorinated groups on a single polymer backbone. Moreover, a dual cross-linked network binder was prepared by thermal polymerization of the fluorinated copolymer and sodium alginate. Unlike the common chemical cross-linked network with a gradual and nonreversible fracturing, the dual cross-linked network which combines chemical and physical cross-linking could effectively hold the silicon particles during the volume change process. As a result, excellent electrochemical performance (1557 mAh g(-1) at a 4 A g(-1) current density after 200 cycles) was achieved with this novel reversible cross-linked binder. Further research studies with regard to the influences of fluorine and acrylamide content were conducted to systematically evaluate the designed binder. Moreover, with the help of new binder, the silicon/graphite and silicon oxide/graphite electrode exhibit superb cycle performance with capacity fade rate of 0.1% and 0.025% per cycle over 200 and 700 cycles, respectively. This novel and unsophisticated design gives a result for fabrication of high-performance Si based electrodes and advancement of the realization of practical application.
引用
收藏
页码:46800 / 46807
页数:8
相关论文
共 50 条
  • [31] Binder-free silicon anodes wrapped in multiple graphene shells for high-performance lithium-ion batteries
    Kim, So Yeun
    Kim, Chang Hyo
    Yang, Cheol-Min
    JOURNAL OF POWER SOURCES, 2021, 486
  • [32] Water-Soluble Conductive Composite Binder for High-Performance Silicon Anode in Lithium-Ion Batteries
    Li, Zikai
    Guo, Anru
    Liu, Dong
    BATTERIES-BASEL, 2022, 8 (06):
  • [33] In Situ Thermally Cross-linked Polyacrylonitrile as Binder for High-Performance Silicon as Lithium Ion Battery Anode
    Shen, Lanyao
    Shen, Lian
    Wang, Zhaoxiang
    Chen, Liquan
    CHEMSUSCHEM, 2014, 7 (07) : 1951 - 1956
  • [34] Dual Cross-Linked Multifunctional Binder for High-Performance Lithium-Sulfur Batteries
    Guo, Rongnan
    Wang, Dong
    Ding, Pan
    Chen, Yong
    Zhao, Hanyu
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (16) : 8590 - 8598
  • [35] Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Wang, Lei
    Liu, Tiefeng
    Peng, Xiang
    Zeng, Wenwu
    Jin, Zhenzhen
    Tian, Weifeng
    Gao, Biao
    Zhou, Yinhua
    Chu, Paul K.
    Huo, Kaifu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (03)
  • [36] Highly Elastic hyperbranched polymer binder for silicon anodes in lithium-ion batteries
    Yang, Chenchen
    Jiang, Yan
    Chen, Feng
    Zhao, Jianwei
    ELECTROCHIMICA ACTA, 2023, 442
  • [37] High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries
    Xi, Fengshuo
    Zhang, Zhao
    Wan, Xiaohan
    Li, Shaoyuan
    Ma, Wenhui
    Chen, Xiuhua
    Chen, Ran
    Luo, Bin
    Wang, Lianzhou
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (43) : 49080 - 49089
  • [38] Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries
    Quan, Lijiao
    Su, Qili
    Lei, Haozhe
    Zhang, Wenguang
    Deng, Yingkang
    He, Jiarong
    Lu, Yong
    Li, Zhe
    Liu, Haijing
    Xing, Lidan
    Li, Weishan
    NATIONAL SCIENCE REVIEW, 2025,
  • [39] Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries
    Zhao, Junkai
    Wei, Daina
    Wang, Jianjun
    Yang, Kaimeng
    Wang, Zhaolong
    Chen, Zhengjian
    Zhang, Shiguo
    Zhang, Ce
    Yang, Xiaojing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 625 : 373 - 382
  • [40] Effect of Binder Content on Silicon Microparticle Anodes for Lithium-Ion Batteries
    Li, Anita
    Hempel, Jacob L. L.
    Balogh, Michael P. P.
    Cheng, Yang-Tse
    Taub, Alan I. I.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (01)