Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries

被引:60
|
作者
Cai, Yongjie [1 ]
Li, Yuanyuan [1 ]
Jin, Biyi [1 ]
Ali, Abid [1 ]
Ling, Min [1 ]
Cheng, Dangguo [1 ]
Lu, Jianguo [2 ,3 ]
Hou, Yang [1 ,2 ]
He, Qinggang [1 ,2 ]
Zhan, Xiaoli [1 ,2 ]
Chen, Fengqiu [1 ,2 ]
Zhang, Qinghua [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ningbo Res Inst, Hangzhou 315100, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; silicon anode; fluorinated binder; dual cross-linked network; emulsion polymerization; CONDUCTIVE POLYMER BINDER; NEGATIVE ELECTRODES; AMORPHOUS-SILICON; SI ANODES; ACID; FRACTURE;
D O I
10.1021/acsami.9b16387
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In next generation lithium-ion batteries (LIBs), silicon is a promising electrode material due to its surprisingly high specific capacity, but it suffers from serious volume changes during the lithiation/delithiation process which gradually lead to the destruction of the electrode structure. A novel fluorinated copolymer with three different polar groups was synthesized to overcome this problem: carboxylic acid, amide, and fluorinated groups on a single polymer backbone. Moreover, a dual cross-linked network binder was prepared by thermal polymerization of the fluorinated copolymer and sodium alginate. Unlike the common chemical cross-linked network with a gradual and nonreversible fracturing, the dual cross-linked network which combines chemical and physical cross-linking could effectively hold the silicon particles during the volume change process. As a result, excellent electrochemical performance (1557 mAh g(-1) at a 4 A g(-1) current density after 200 cycles) was achieved with this novel reversible cross-linked binder. Further research studies with regard to the influences of fluorine and acrylamide content were conducted to systematically evaluate the designed binder. Moreover, with the help of new binder, the silicon/graphite and silicon oxide/graphite electrode exhibit superb cycle performance with capacity fade rate of 0.1% and 0.025% per cycle over 200 and 700 cycles, respectively. This novel and unsophisticated design gives a result for fabrication of high-performance Si based electrodes and advancement of the realization of practical application.
引用
收藏
页码:46800 / 46807
页数:8
相关论文
共 50 条
  • [1] Hybrid Ionically Covalently Cross-Linked Network Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries
    Zeng, Xuejian
    Yue, Hongyan
    Wu, Jina
    Chen, Chao
    Liu, Lichun
    BATTERIES-BASEL, 2023, 9 (05):
  • [2] An elastic cross-linked polymeric binder for high-performance silicon/ graphite composite anodes in lithium-ion batteries
    Son, Ho-Jun
    Reddy, B. S.
    Na, Ho-Jun
    Kim, Joo-Hyun
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    Cho, Gyu-Bong
    Cho, Kwon-Koo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [3] Efficient in situ cross-linked binder for silicon anodes in lithium-ion batteries
    Lee, Jyh-Tsung
    Bolloju, Satish
    Chiou, Chun-Yu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Carboxymethyl Three-Dimensional Cross-Linked Biopolymer Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries
    Cai, Xingyun
    Xu, Jingjing
    Shao, Yaxin
    Cai, Songming
    Hu, Chao
    Lu, Shirong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (09) : 4559 - 4569
  • [5] A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries
    Zhang, Li
    Zhang, Liya
    Chai, Lili
    Xue, Peng
    Hao, Weiwei
    Zheng, Honghe
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (44) : 19036 - 19045
  • [6] An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading
    Zhang, Shiyun
    Liu, Kai
    Xie, Jian
    Xu, Xiongwen
    Tu, Jian
    Chen, Weixiang
    Chen, Fang
    Zhu, Tiejun
    Zhao, Xinbing
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (05) : 6594 - 6602
  • [7] Cross-linked hyperbranched polyethylenimine as an efficient multidimensional binder for silicon anodes in lithium-ion batteries
    Chen, Chao
    Chen, Feng
    Liu, Lianmei
    Zhao, Jianwei
    Wang, Fei
    ELECTROCHIMICA ACTA, 2019, 326
  • [8] An esterified cross-linked polymer binder for high-rate stabilised silicon anodes in lithium-ion batteries
    Liu, Lingbin
    Guo, Haiyan
    Yu, Yuxiu
    Zhang, Qiang
    Liu, Yaodong
    Li, Nanwen
    ELECTROCHIMICA ACTA, 2025, 519
  • [9] Dual Cross-Linked Poly(ether imide)/Poly(vinyl alcohol) Network Binder with Improved Stability for Silicon Based Anodes in Lithium-Ion Batteries
    Ba, Zhaohu
    Wang, Zhenxing
    Xu, Ke
    Gan, Feng
    Li, Xiuting
    Dong, Jie
    Zhang, Qinghua
    Zhao, Xin
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (13) : 20197 - 20208
  • [10] A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries
    Hu, Shanming
    Cai, Zhixiang
    Huang, Tao
    Zhang, Hongbin
    Yu, Aishui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (04) : 4311 - 4317