PRECONDITIONING OF OPTIMAL TRANSPORT

被引:5
|
作者
Kuang, Max [1 ]
Tabak, Esteban G. [1 ]
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
关键词
preconditioning; optimal transport; matrix factorization; COLOR;
D O I
10.1137/16M1074953
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A preconditioning procedure is developed for the L-2 and more general optimal transport problems. The procedure is based on a family of affine map pairs which transforms the original measures into two new measures that are closer to each other while preserving the optimality of solutions. It is proved that the preconditioning procedure minimizes the remaining transportation cost among all admissible affine maps. The procedure can be used on both continuous measures and finite sample sets from distributions. In numerical examples, the procedure is applied to multivariate normal distributions, to a two-dimensional shape transform problem, and to color-transfer problems.
引用
收藏
页码:A1793 / A1810
页数:18
相关论文
共 50 条
  • [31] Quadratically Regularized Optimal Transport
    Lorenz, Dirk A.
    Manns, Paul
    Meyer, Christian
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1919 - 1949
  • [32] Autoregressive optimal transport models
    Zhu, Changbo
    Mueller, Hans-Georg
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 1012 - 1033
  • [33] Quantum optimal transport: an invitation
    Trevisan, Dario
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 347 - 360
  • [34] On the Optimal Transport of Semiclassical Measures
    Lorenzo Zanelli
    Applied Mathematics & Optimization, 2016, 74 : 325 - 342
  • [35] Sliced Optimal Transport Sampling
    Paulin, Lois
    Bonneel, Nicolas
    Coeurjolly, David
    Iehl, Jean-Claude
    Webanck, Antoine
    Desbrun, Mathieu
    Ostromoukhov, Victor
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [36] Quadratically Regularized Optimal Transport
    Dirk A. Lorenz
    Paul Manns
    Christian Meyer
    Applied Mathematics & Optimization, 2021, 83 : 1919 - 1949
  • [37] Efficient Discretization of Optimal Transport
    Wang, Junqi
    Wang, Pei
    Shafto, Patrick
    ENTROPY, 2023, 25 (06)
  • [38] Semidual Regularized Optimal Transport
    Cuturi, Marco
    Peyre, Gabriel
    SIAM REVIEW, 2018, 60 (04) : 941 - 965
  • [39] Sliced optimal transport on the sphere
    Quellmalz, Michael
    Beinert, Robert
    Steidl, Gabriele
    INVERSE PROBLEMS, 2023, 39 (10)
  • [40] LINEARIZED OPTIMAL TRANSPORT ON MANIFOLDS*
    Sarrazin, Clement
    Schmitzer, Bernhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4970 - 5016