Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

被引:10
|
作者
van Gorp, Jetse S. [1 ]
Bakker, Chris J. G. [1 ,2 ]
Bouwman, Job G. [1 ]
Smink, Jouke [3 ]
Zijlstra, Frank [1 ]
Seevinck, Peter R. [1 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, NL-3584 CX Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiol, NL-3584 CX Utrecht, Netherlands
[3] Philips Healthcare, Best, Netherlands
关键词
geometrically accurate MRI; 3D phase encoded turbo spin-echo imaging; susceptibility; field inhomogeneities; compressed sensing; METAL; RADIOTHERAPY; DISTORTION; IMAGES; SUSCEPTIBILITY; SENSITIVITY; RESOLUTION; TOOL;
D O I
10.1088/0031-9155/60/2/615
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Delta chi= 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T) SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T) SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T-2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe field inhomogeneities.
引用
收藏
页码:615 / 631
页数:17
相关论文
共 22 条
  • [21] Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures
    Yarach, Uten
    Saekho, Suwit
    Setsompop, Kawin
    Suwannasak, Atita
    Boonsuth, Ratthaporn
    Wantanajittikul, Kittichai
    Angkurawaranon, Salita
    Angkurawaranon, Chaisiri
    Sangpin, Prapatsorn
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2021, 34 (06) : 915 - 927
  • [22] Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures
    Uten Yarach
    Suwit Saekho
    Kawin Setsompop
    Atita Suwannasak
    Ratthaporn Boonsuth
    Kittichai Wantanajittikul
    Salita Angkurawaranon
    Chaisiri Angkurawaranon
    Prapatsorn Sangpin
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2021, 34 : 915 - 927