Toward a Matrix-Free Covariance Matrix Adaptation Evolution Strategy

被引:21
作者
Arabas, Jarosiaw [1 ]
Jagodzinski, Dariusz [1 ]
机构
[1] Warsaw Univ Technol, Inst Comp Sci, PL-00665 Warsaw, Poland
关键词
Covariance matrices; Sociology; Optimization; History; Gaussian distribution; Indexes; Black-box optimization; covariance matrix adaptation evolution strategy (CMA-ES); differential evolution (DE); DIFFERENTIAL EVOLUTION; CMA;
D O I
10.1109/TEVC.2019.2907266
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we discuss a method for generating new individuals such that their mean vector and the covariance matrix are defined by formulas analogous to the covariance matrix adaptation evolution strategy (CMA-ES). In contrast to CMA-ES, which generates new individuals using multivariate Gaussian distribution with an explicitly defined covariance matrix, the introduced method uses combinations of difference vectors between archived individuals and univariate Gaussian random vectors along directions of past shifts of the population midpoints. We use this method to formulate the differential evolution strategy (DES)-an algorithm that is a crossover between differential evolution (DE) and CMA-ES. The numerical results presented in this paper indicate that DES is competitive against CMA-ES in performing both local and global optimization.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 31 条
[1]   Improving Evolutionary Algorithms in a Continuous Domain by Monitoring the Population Midpoint [J].
Arabas, Jaroslaw ;
Biedrzycki, Rafal .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (05) :807-812
[2]  
Awad N. H., 2016, CHINA REP
[3]   Simplify Your Covariance Matrix Adaptation Evolution Strategy [J].
Beyer, Hans-Georg ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (05) :746-759
[4]  
Biedrzycki R, 2017, IEEE C EVOL COMPUTAT, P1489, DOI 10.1109/CEC.2017.7969479
[5]  
Brest J, 2017, IEEE C EVOL COMPUTAT, P1311, DOI 10.1109/CEC.2017.7969456
[6]   Recent advances in differential evolution - An updated survey [J].
Das, Swagatam ;
Mullick, Sankha Subhra ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2016, 27 :1-30
[7]   A Note on the Empirical Evaluation of Intermediate Recombination [J].
Fogel, David B. ;
Beyer, Hans-Georg .
EVOLUTIONARY COMPUTATION, 1995, 3 (04) :491-495
[8]   A Differential Covariance Matrix Adaptation Evolutionary Algorithm for real parameter optimization [J].
Ghosh, Saurav ;
Das, Swagatam ;
Roy, Subhrajit ;
Islam, S. K. Minhazul ;
Suganthan, P. N. .
INFORMATION SCIENCES, 2012, 182 (01) :199-219
[9]  
Hansen N, 2006, STUD FUZZ SOFT COMP, V192, P75
[10]   Completely derandomized self-adaptation in evolution strategies [J].
Hansen, N ;
Ostermeier, A .
EVOLUTIONARY COMPUTATION, 2001, 9 (02) :159-195