Atomic layer deposition of ZnS via in situ production of H2S

被引:67
|
作者
Bakke, J. R. [1 ]
King, J. S. [1 ]
Jung, H. J. [2 ]
Sinclair, R. [2 ]
Bent, S. F. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Zinc sulfide; Atomic layer deposition; Hydrogen sulfide; Band gap; Stacking fault; Zincblende; Wurtzite; Transmission electron microscopy; CHEMICAL BATH DEPOSITION; SULFIDE THIN-FILMS; OPTICAL-PROPERTIES; GROWTH; EPITAXY; CDS; THIOACETAMIDE;
D O I
10.1016/j.tsf.2010.03.074
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic layer deposition (ALD) of ZnS films utilizing diethylzinc and in situ generated H2S was performed over a temperature range of 60 degrees C-400 degrees C. This method for generating H2S in situ was developed to eliminate the need to store high pressure H2S gas. The H2S precursor was generated by heating thioacetamide to 150 degrees C in an inert atmosphere, producing acetonitrile and H2S as confirmed with mass spectroscopy. ALD behavior was confirmed by investigation of growth behavior and saturation curves. The properties of the films were studied with X-ray diffraction, transmission electron microscopy, ellipsometry, atomic force microscopy, scanning electron microscopy, ultraviolet visible spectroscopy, and X-ray photoelectron spectroscopy. The results show a growth rate that monotonically decreases with temperature, and films that are stoichiometric in Zn and S. The root mean square roughness of the films increases with temperature above 100 degrees C. A change in crystal phase begins at 300 degrees C. The band gap is dependent on the crystal phase and is estimated to be 3.6-4 eV. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5400 / 5408
页数:9
相关论文
共 50 条
  • [21] Atomic layer deposition of zinc sulfide with Zn(TMHD)2
    Short, Andrew
    Jewell, Leila
    Doshay, Sage
    Church, Carena
    Keiber, Trevor
    Bridges, Frank
    Carter, Sue
    Alers, Glenn
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (01):
  • [22] Plasma-Enhanced Atomic Layer Deposition of Two-Dimensional WS2 from WF6, H2 Plasma, and H2S
    Groven, Benjamin
    Heyne, Markus
    Mehta, Ankit Nalin
    Bender, Hugo
    Nuytten, Thomas
    Meersschaut, Johan
    Conard, Thierry
    Verdonck, Patrick
    Van Elshocht, Sven
    Vandervorst, Wilfried
    De Gendt, Stefan
    Heyns, Marc
    Radu, Iuliana
    Caymax, Matty
    Delabie, Annelies
    CHEMISTRY OF MATERIALS, 2017, 29 (07) : 2927 - 2938
  • [23] Surface chemical reactions during atomic layer deposition of ZnO, ZnS, and Zn(O,S)
    Tran Thi Ngoc Van
    Ansari, Abu Saad
    Shong, Bonggeun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (02):
  • [24] Geometrical Anatomy for Oxygen Vacancies in Epitaxial Hf0.5Zr0.5O2 Films Grown via Atomic Layer Deposition
    An, Chihwan
    Cho, Jung Woo
    Lee, Tae Yoon
    Song, Myeong Seop
    Kang, Baekjune
    Kim, Hongju
    Lee, Jun Hee
    Sohn, Changhee
    Chae, Seung Chul
    ADVANCED MATERIALS INTERFACES, 2024,
  • [25] In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition
    Langereis, E.
    Heil, S. B. S.
    Knoops, H. C. M.
    Keuning, W.
    van de Sanden, M. C. M.
    Kessels, W. M. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (07)
  • [26] Catalytic transformation of H2S for H2 production
    Burra, Kiran Raj G.
    Bassioni, Ghada
    Gupta, Ashwani K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (51) : 22852 - 22860
  • [27] Atomic imaging and modeling of passivation, functionalization, and atomic layer deposition nucleation of the SiGe(001) surface via H2O2(g) and trimethylaluminum dosing
    Kaufman-Osborn, Tobin
    Chagarov, Evgueni A.
    Park, Sang Wook
    Sahu, Bhagawan
    Siddiqui, Shariq
    Kummel, Andrew C.
    SURFACE SCIENCE, 2014, 630 : 273 - 279
  • [28] Scalable Production of Nanostructured Particles using Atomic Layer Deposition
    Goulas, Aristeidis
    van Ommen, J. Ruud
    KONA POWDER AND PARTICLE JOURNAL, 2014, (31) : 234 - 246
  • [29] In situ monitoring of hafnium oxide atomic layer deposition
    Maslar, J. E.
    Hurst, W. S.
    Burgess, D. R., Jr.
    Kimes, W. A.
    Nguyen, N. V.
    Moore, E. F.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2007, 2007, 931 : 121 - +
  • [30] Film thickness effect in c-axis oxygen vacancy-passivated ZnO prepared via atomic layer deposition by using H2O2
    Wang, Yue
    Kang, Kyung-Mun
    Kim, Minjae
    Park, Hyung-Ho
    APPLIED SURFACE SCIENCE, 2020, 529