Atomic layer deposition of ZnS via in situ production of H2S

被引:67
|
作者
Bakke, J. R. [1 ]
King, J. S. [1 ]
Jung, H. J. [2 ]
Sinclair, R. [2 ]
Bent, S. F. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Zinc sulfide; Atomic layer deposition; Hydrogen sulfide; Band gap; Stacking fault; Zincblende; Wurtzite; Transmission electron microscopy; CHEMICAL BATH DEPOSITION; SULFIDE THIN-FILMS; OPTICAL-PROPERTIES; GROWTH; EPITAXY; CDS; THIOACETAMIDE;
D O I
10.1016/j.tsf.2010.03.074
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic layer deposition (ALD) of ZnS films utilizing diethylzinc and in situ generated H2S was performed over a temperature range of 60 degrees C-400 degrees C. This method for generating H2S in situ was developed to eliminate the need to store high pressure H2S gas. The H2S precursor was generated by heating thioacetamide to 150 degrees C in an inert atmosphere, producing acetonitrile and H2S as confirmed with mass spectroscopy. ALD behavior was confirmed by investigation of growth behavior and saturation curves. The properties of the films were studied with X-ray diffraction, transmission electron microscopy, ellipsometry, atomic force microscopy, scanning electron microscopy, ultraviolet visible spectroscopy, and X-ray photoelectron spectroscopy. The results show a growth rate that monotonically decreases with temperature, and films that are stoichiometric in Zn and S. The root mean square roughness of the films increases with temperature above 100 degrees C. A change in crystal phase begins at 300 degrees C. The band gap is dependent on the crystal phase and is estimated to be 3.6-4 eV. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5400 / 5408
页数:9
相关论文
共 50 条
  • [1] Atomic layer deposition of tin monosulfide thin film using Sn(acac)2 and H2S
    Lee, Dowwook
    Jeon, Hyeongtag
    VACUUM, 2025, 231
  • [2] Atomic layer deposition of ZnS nanotubes
    Farhangfar, Sh
    Yang, R. B.
    Pelletier, M.
    Nielsch, K.
    NANOTECHNOLOGY, 2009, 20 (32)
  • [3] Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing
    Lee, Seungjin
    Shin, Seokyoon
    Ham, Giyul
    Lee, Juhyun
    Choi, Hyeongsu
    Park, Hyunwoo
    Jeon, Hyeongtag
    AIP ADVANCES, 2017, 7 (04)
  • [4] Atomic layer deposition of molybdenum disulfide films using MoF6 and H2S
    Mane, Anil U.
    Letourneau, Steven
    Mandia, David J.
    Liu, Jian
    Libera, Joseph A.
    Lei, Yu
    Peng, Qing
    Graugnard, Elton
    Elam, Jeffrey W.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (01):
  • [5] Observing the Nucleation Phase of Atomic Layer Deposition In Situ
    Mack, James F.
    Van Stockum, Philip B.
    Yemane, Yonas T.
    Logar, Manca
    Iwadate, Hitoshi
    Prinz, Fritz B.
    CHEMISTRY OF MATERIALS, 2012, 24 (22) : 4357 - 4362
  • [6] Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S
    Agbenyeke, Raphael Edem
    Park, Bo Keun
    Chung, Taek-Mo
    Kim, Chang Gyoun
    Han, Jeong Hwan
    APPLIED SURFACE SCIENCE, 2018, 456 : 501 - 506
  • [7] Atomic Layer Deposition of Zn(O,S) Alloys Using Diethylzinc with H2O and H2S: Effect of Exchange Reactions
    Lancaster, Diane K.
    Sun, Huaxing
    George, Steven M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (34) : 18643 - 18652
  • [8] Ion Exchange in Ultrathin Films of Cu2S and ZnS under Atomic Layer Deposition Conditions
    Thimsen, Elijah
    Peng, Qing
    Martinson, Alex B. F.
    Pellin, Michael J.
    Elam, Jeffrey W.
    CHEMISTRY OF MATERIALS, 2011, 23 (20) : 4411 - 4413
  • [9] Inherent area-selective atomic layer deposition of ZnS
    Zhang, Chao
    Vehkamaki, Marko
    Leskela, Markku
    Ritala, Mikko
    DALTON TRANSACTIONS, 2023, 52 (28) : 9622 - 9630
  • [10] Surface Chemistry during Atomic-Layer Deposition of Nickel Sulfide from Nickel Amidinate and H2S
    Zhao, Ran
    Guo, Zheng
    Wang, Xinwei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (37) : 21514 - 21520