Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells

被引:133
|
作者
Meyer, Mark B. [1 ]
Benkusky, Nancy A. [1 ]
Sen, Buer [2 ]
Rubin, Janet [2 ]
Pike, J. Wesley [1 ]
机构
[1] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[2] Univ N Carolina, Dept Med, Chapel Hill, NC 27514 USA
基金
美国国家卫生研究院;
关键词
adipocyte; cell differentiation; ChIP-sequencing (ChIP-seq); histone modification; mesenchymal stem cells (MSCs); osteoblast; VITAMIN-D-RECEPTOR; TRANSCRIPTION FACTOR-BINDING; BONE-MARROW; 1,25-DIHYDROXYVITAMIN D-3; GENE-EXPRESSION; PPAR-GAMMA; SIGNALING PATHWAY; FAT ACCUMULATION; CIRCADIAN CLOCK; ADIPOSE-TISSUE;
D O I
10.1074/jbc.M116.736538
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPAR are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBP, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPAR, retinoid X receptor, C/EBP, and C/EBP binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies.
引用
收藏
页码:17829 / 17847
页数:19
相关论文
共 50 条
  • [21] Purple sweet potato leaf extracts suppress adipogenic differentiation of human bone marrow-derived mesenchymal stem cells
    Ishii, Masakazu
    Ikeda, Nao
    Miyata, Haruka
    Takahashi, Manami
    Nishimura, Masahiro
    JOURNAL OF FOOD BIOCHEMISTRY, 2022, 46 (02)
  • [22] GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells
    Kamata, Mayumi
    Okitsu, Yoko
    Fujiwara, Tohru
    Kanehira, Masahiko
    Nakajima, Shinji
    Takahashi, Taro
    Inoue, Ai
    Fukuhara, Noriko
    Onishi, Yasushi
    Ishizawa, Kenichi
    Shimizu, Ritsuko
    Yamamoto, Masayuki
    Harigae, Hideo
    HAEMATOLOGICA, 2014, 99 (11) : 1686 - 1696
  • [23] Comparative characterization and osteogenic / adipogenic differentiation of mesenchymal stem cells derived from male rat hair follicles and bone marrow
    Zaki A.K.A.
    Almundarij T.I.
    Abo-Aziza F.A.M.
    Cell Regeneration, 9 (1)
  • [24] Bone marrow-derived stem cells and "plasticity"
    A. Hüttmann
    C. L. Li
    U. Dührsen
    Annals of Hematology, 2003, 82 : 599 - 604
  • [25] Bone marrow-derived stem cells and 'plasticity'
    Hüttmann, A
    Li, CL
    Dührsen, U
    ANNALS OF HEMATOLOGY, 2003, 82 (10) : 599 - 604
  • [26] Involvement of PP2A methylation in the adipogenic differentiation of bone marrow-derived mesenchymal stem cell
    Ikeda, Shunta
    Tsuji, Shunya
    Ohama, Takashi
    Sato, Koichi
    JOURNAL OF BIOCHEMISTRY, 2020, 168 (06): : 643 - 650
  • [27] Lithium chloride attenuates the abnormal osteogenic/adipogenic differentiation of bone marrow-derived mesenchymal stem cells obtained from rats with steroid-related osteonecrosis by activating the β-catenin pathway
    Yu, Zefeng
    Fan, Lihong
    Li, Jia
    Ge, Zhaogang
    Dang, Xiaoqian
    Wang, Kunzheng
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 36 (05) : 1264 - 1272
  • [28] Libanoridin Isolated from Corydalis heterocarpa Inhibits Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells
    Karadeniz, Fatih
    Oh, Jung Hwan
    Jang, Mi Soon
    Seo, Youngwan
    Kong, Chang-Suk
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [29] Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells
    Vidoni, Chiara
    Ferraresi, Alessandra
    Secomandi, Eleonora
    Vallino, Letizia
    Gardin, Chiara
    Zavan, Barbara
    Mortellaro, Carmen
    Isidoro, Ciro
    CELL COMMUNICATION AND SIGNALING, 2019, 17 (01)
  • [30] Comparison of the osteogenic capacity of minipig and human bone marrow-derived mesenchymal stem cells
    Heino, Terhi J.
    Alm, Jessica J.
    Moritz, Niko
    Aro, Hannu T.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2012, 30 (07) : 1019 - 1025