Computational approaches for network-based integrative multi-omics analysis

被引:40
作者
Agamah, Francis E. [1 ,2 ]
Bayjanov, Jumamurat R. [3 ]
Niehues, Anna [3 ]
Njoku, Kelechi F. [1 ]
Skelton, Michelle [2 ]
Mazandu, Gaston K. [1 ,2 ,4 ]
Ederveen, Thomas H. A. [3 ]
Mulder, Nicola [2 ]
Chimusa, Emile R. [5 ]
't Hoen, Peter A. C. [3 ]
机构
[1] Univ Cape Town, Inst Infect Dis & Mol Med, Div Human Genet, Dept Pathol, Cape Town, South Africa
[2] Univ Cape Town, Inst Infect Dis & Mol Med, Computat Biol Div,CIDRI Africa Wellcome Trust Ctr, Dept Integrat Biomed Sci,Fac Hlth Sci, Cape Town, South Africa
[3] Radboud Univ Nijmegen, Radboud Inst Mol Life Sci, Ctr Mol & Biomol Informat CMBI, Med Ctr, Nijmegen, Netherlands
[4] African Inst Math Sci, Cape Town, South Africa
[5] Northumbria Univ, Fac Hlth & Life Sci, Dept Appl Sci, Newcastle Upon Tyne, England
关键词
multi-omics; data integration; multi-modal network; machine learning; network diffusion; propagation; network causal inference; DISEASE; PROPAGATION; PATHWAYS; BIOLOGY; MODEL;
D O I
10.3389/fmolb.2022.967205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Advances in omics technologies allow for holistic studies into biological systems. These studies rely on integrative data analysis techniques to obtain a comprehensive view of the dynamics of cellular processes, and molecular mechanisms. Network-based integrative approaches have revolutionized multi-omics analysis by providing the framework to represent interactions between multiple different omics-layers in a graph, which may faithfully reflect the molecular wiring in a cell. Here we review network-based multi-omics/multi-modal integrative analytical approaches. We classify these approaches according to the type of omics data supported, the methods and/or algorithms implemented, their node and/or edge weighting components, and their ability to identify key nodes and subnetworks. We show how these approaches can be used to identify biomarkers, disease subtypes, crosstalk, causality, and molecular drivers of physiological and pathological mechanisms. We provide insight into the most appropriate methods and tools for research questions as showcased around the aetiology and treatment of COVID-19 that can be informed by multi-omics data integration. We conclude with an overview of challenges associated with multi-omics network-based analysis, such as reproducibility, heterogeneity, (biological) interpretability of the results, and we highlight some future directions for network-based integration.
引用
收藏
页数:27
相关论文
共 106 条
[1]   Network-driven analysis of human-Plasmodium falciparum interactome: processes for malaria drug discovery and extracting in silico targets [J].
Agamah, Francis E. ;
Damena, Delesa ;
Skelton, Michelle ;
Ghansah, Anita ;
Mazandu, Gaston K. ;
Chimusa, Emile R. .
MALARIA JOURNAL, 2021, 20 (01)
[2]   Learning Causal Biological Networks With the Principle of Mendelian Randomization [J].
Badsha, Md Bahadur ;
Fu, Audrey Qiuyan .
FRONTIERS IN GENETICS, 2019, 10
[3]   Methods for the integration of multi-omics data: mathematical aspects [J].
Bersanelli, Matteo ;
Mosca, Ettore ;
Remondini, Daniel ;
Giampieri, Enrico ;
Sala, Claudia ;
Castellani, Gastone ;
Milanesi, Luciano .
BMC BIOINFORMATICS, 2016, 17
[4]   Between inflammation and thrombosis: endothelial cells in COVID-19 [J].
Birnhuber, Anna ;
Fliesser, Elisabeth ;
Gorkiewicz, Gregor ;
Zacharias, Martin ;
Seeliger, Benjamin ;
David, Sascha ;
Welte, Tobias ;
Schmidt, Julius ;
Olschewski, Horst ;
Wygrecka, Malgorzata ;
Kwapiszewska, Grazyna .
EUROPEAN RESPIRATORY JOURNAL, 2021, 58 (03)
[5]   Interpretation of network-based integration from multi-omics longitudinal data [J].
Bodein, Antoine ;
Scott-Boyer, Marie-Pier ;
Perin, Olivier ;
Kim-Anh Le Cao ;
Droit, Arnaud .
NUCLEIC ACIDS RESEARCH, 2022, 50 (05) :E27
[6]   A Generic Multivariate Framework for the Integration of Microbiome Longitudinal Studies With Other Data Types [J].
Bodein, Antoine ;
Chapleur, Olivier ;
Droit, Arnaud ;
Cao, Kim-Anh Le .
FRONTIERS IN GENETICS, 2019, 10
[7]   Integrative Multi-omics Module Network Inference with Lemon-Tree [J].
Bonnet, Eric ;
Calzone, Laurence ;
Michoel, Tom .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (02)
[8]  
Buescher JM, 2016, CANCER METAB, V4, DOI 10.1186/s40170-016-0143-y
[9]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[10]   Prospects and challenges of multi-omics data integration in toxicology [J].
Canzler, Sebastian ;
Schor, Jana ;
Busch, Wibke ;
Schubert, Kristin ;
Rolle-Kampczyk, Ulrike E. ;
Seitz, Herve ;
Kamp, Hennicke ;
von Bergen, Martin ;
Buesen, Roland ;
Hackermueller, Joerg .
ARCHIVES OF TOXICOLOGY, 2020, 94 (02) :371-388