A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity

被引:19
作者
Liu, Qiao [1 ]
Zhao, Jihong [1 ]
Cui, Shangbin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
WEAK SOLUTIONS;
D O I
10.1063/1.3567170
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we provide a sufficient condition for regularity of solutions to the 3D nematic liquid crystal flow in the entire space in terms of one directional derivative of the velocity field. More precisely, we prove that if partial derivative(3)u belongs to L-beta(0, T; L-alpha(R-3)) with 3/alpha + 2/beta <= 1 and alpha > 3, then the solution (u, d) is regular. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3567170]
引用
收藏
页数:8
相关论文
共 23 条
[1]  
Adams R. A., 2003, SOBLEV SPACES
[2]  
[Anonymous], 2004, Applications of Mathematics
[3]   Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD [J].
Caflisch, RE ;
Klapper, I ;
Steele, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :443-455
[4]   Two regularity criteria for the 3D MHD equations [J].
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2263-2274
[5]   SUFFICIENT CONDITIONS FOR THE REGULARITY TO THE 3D NAVIER STOKES EQUATIONS [J].
Cao, Chongsheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) :1141-1151
[6]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[7]  
ERICKSEN JL, 1987, RES MECH, V21, P381
[8]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[9]   EXISTENCE AND PARTIAL REGULARITY OF STATIC LIQUID-CRYSTAL CONFIGURATIONS [J].
HARDT, R ;
KINDERLEHRER, D ;
LIN, FH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (04) :547-570
[10]   On the regularity of weak solutions to the magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :235-254