Solute Segregation to Grain Boundaries in Al: A First-Principles Evaluation

被引:18
作者
Tang, Jiawei [1 ,2 ]
Wang, Yiren [1 ,2 ]
Jiang, Yong [1 ,2 ]
Yao, Jiangang [2 ]
Zhang, Hao [3 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Natl Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Yantai Nanshan Univ, Sch Mat Sci & Engn, Yantai 265713, Peoples R China
[3] Jiangsu Haoran Spray Forming Alloy Co Ltd, Zhenjiang 212009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Al alloy; Grain boundary; Segregation; Vacancy; Solute; First-principles; STRESS-CORROSION CRACKING; ATOMIC-SCALE ANALYSIS; INDUCED EMBRITTLEMENT; MECHANICAL-PROPERTIES; MG; CU; ALUMINUM; PRECIPITATION; ALLOYS; STRENGTH;
D O I
10.1007/s40195-022-01383-w
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Solute-induced grain boundary (GB) strengthening is effective in improving the toughness and tensile strength of polycrystalline alloys. In this work, GB segregation behaviors of solute elements in Al alloys and their potential effects on GB binding have been systematically investigated from first-principles energetics. The low-energy sigma 3(111) and sigma 11(113) are immune to vacancy segregation, while high-energy Al GBs, such as sigma 13(320), sigma 9(221), sigma 5(210), and sigma 5(310), can attract both vacancies and solutes. Under-sized elements (Ni, Fe, Co, Cu) and similar-sized elements (Si, Zn, Ag, and Ti) prefer interstitial or vacancy sites at the GB interface, while over-sized elements (Mg, Zr, Sc, Er) tend to substitute Al or vacancy-neighboring sites at the GB interface. Segregated vacancies weaken GBs. Under-sized Ni, Co, Cu, similar-sized Ti, and over-sized Zr, Er, can directly enhance Al GBs, while similar-sized Ag and over-sized Mg reduce the GB binding strength. Solute strengthening or weakening effects tend to be always mitigated, more or less, by GB-segregated vacancies.
引用
收藏
页码:1572 / 1582
页数:11
相关论文
共 80 条
[1]   Experimental analysis of direct thermal methane cracking [J].
Abanades, A. ;
Ruiz, E. ;
Ferruelo, E. M. ;
Hernandez, F. ;
Cabanillas, A. ;
Martinez-Val, J. M. ;
Rubio, J. A. ;
Lopez, C. ;
Gavela, R. ;
Barrera, G. ;
Rubbia, C. ;
Salmieri, D. ;
Rodilla, E. ;
Gutierrez, D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (20) :12877-12886
[2]   Atomic scale investigation of grain boundary structure role on intergranular deformation in aluminium [J].
Adlakha, I. ;
Bhatia, M. A. ;
Tschopp, M. A. ;
Solanki, K. N. .
PHILOSOPHICAL MAGAZINE, 2014, 94 (30) :3445-3466
[3]   Grain boundary sliding and migration: Effect of temperature and vacancies [J].
Ballo, P ;
Kioussis, N ;
Lu, G .
PHYSICAL REVIEW B, 2001, 64 (02)
[4]   CSL DSC LATTICE MODEL FOR GENERAL CRYSTAL-CRYSTAL BOUNDARIES AND THEIR LINE DEFECTS [J].
BALLUFFI, RW ;
BROKMAN, A ;
KING, AH .
ACTA METALLURGICA, 1982, 30 (08) :1453-1470
[5]   Correlation of grain boundary extra free volume with vacancy and solute segregation at grain boundaries: a case study for Al [J].
Cao, Fuhua ;
Jiang, Yong ;
Hu, Tao ;
Yin, Dengfeng .
PHILOSOPHICAL MAGAZINE, 2018, 98 (06) :464-483
[6]   Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances [J].
Chen, Gaoqiang ;
Zhang, Shuai ;
Zhu, Yucan ;
Yang, Chengle ;
Shi, Qingyu .
ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (01) :3-12
[7]   Microstructural dependence of fracture toughness in high-strength 7000 forging alloys [J].
Cvijovic, Z. ;
Rakin, M. ;
Vratnica, M. ;
Cvijovic, I. .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (08) :2115-2129
[8]   Bismuth-induced embrittlement of copper grain boundaries [J].
Duscher, G ;
Chisholm, MF ;
Alber, U ;
Rühle, M .
NATURE MATERIALS, 2004, 3 (09) :621-626
[9]   Atomistic theory and computer simulation of grain boundary structure and diffusion [J].
Farkas, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (42) :R497-R516
[10]  
Ferragut R., 2006, MATER SCI FORUM, V396-4, P777