Exactly Solvable Schrodinger Operators

被引:39
作者
Derezinski, Jan [1 ]
Wrochna, Michal [2 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-00682 Warsaw, Poland
[2] Univ Gottingen, Inst Math, RTG Math Struct Modern Quantum Phys, D-37073 Gottingen, Germany
来源
ANNALES HENRI POINCARE | 2011年 / 12卷 / 02期
关键词
QUANTUM-MECHANICS; POTENTIALS;
D O I
10.1007/s00023-011-0077-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We systematically describe and classify one-dimensional Schrodinger equations that can be solved in terms of hypergeometric type functions. Beside the well-known families, we explicitly describe two new classes of exactly solvable Schrodinger equations that can be reduced to the Hermite equation.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 27 条
[1]  
[Anonymous], 1988, Special functions of mathematical physics
[2]  
[Anonymous], 1971, Practical Quantum Mechanics I
[3]  
[Anonymous], J MATH PURES APPL
[4]  
[Anonymous], 1873, Crelles Journal, DOI DOI 10.1515/CRLL.1873.75.292
[5]  
Bose A.K., 1964, Nuovo C, V32, P679, DOI [10.1007/BF02735890, DOI 10.1007/BF02735890]
[6]  
BOSE AK, 1980, T CAMB PHILOS SOC, V13, P5
[7]  
CAYLEY A, 1880, T CAMB PHILOS SOC, V13, P5
[8]  
Cooper F., 2001, Supersymmetry in Quantum Mechanics
[9]   Shape-invariant hypergeometric type operators with application to quantum mechanics [J].
Cotfas, Nicolae .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2006, 4 (03) :318-330
[10]   The penetration of a potential barrier by electrons [J].
Eckart, C .
PHYSICAL REVIEW, 1930, 35 (11) :1303-1309