Fuzzy clustering of time series in the frequency domain

被引:94
|
作者
Maharaj, Elizabeth Ann [1 ]
D'Urso, Pierpaolo [2 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Melbourne, Vic 3145, Australia
[2] Univ Roma La Sapienza, Dipartimento Analisi Econ & Sociali, I-00185 Rome, Italy
关键词
Time series; Frequency domain; Normalized periodogram; Log normalized periodogram; Cepstral coefficients; Fuzzy clustering; C-MEANS; MODEL; VALIDITY; CLASSIFICATION; ALGORITHMS; FUZZINESS; COMPONENT; EXPONENT; NUMBER; INDEX;
D O I
10.1016/j.ins.2010.11.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional and fuzzy cluster analyses are applicable to variables whose values are uncorrelated. Hence, in order to cluster time series data which are usually serially correlated, one needs to extract features from the time series, the values of which are uncorrelated. The periodogram which is an estimator of the spectral density function of a time series is a feature that can be used in the cluster analysis of time series because its ordinates are uncorrelated. Additionally, the normalized periodogram and the logarithm of the normalized periodogram are also features that can be used. In this paper, we consider a fuzzy clustering approach for time series based on the estimated cepstrum. The cepstrum is the spectrum of the logarithm of the spectral density function. We show in our simulation studies for the typical generating processes that have been considered, fuzzy clustering based on the cepstral coefficients performs very well compared to when it is based on other features. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1187 / 1211
页数:25
相关论文
共 50 条
  • [1] Quantile-based fuzzy clustering of multivariate time series in the frequency domain
    Lopez-Oriona, Angel
    Vilar, Jose A.
    D'Urso, Pierpaolo
    FUZZY SETS AND SYSTEMS, 2022, 443 : 115 - 154
  • [2] Autocorrelation-based fuzzy clustering of time series
    D'Urso, Pierpaolo
    Maharaj, Elizabeth Ann
    FUZZY SETS AND SYSTEMS, 2009, 160 (24) : 3565 - 3589
  • [3] Fuzzy clustering of time series with time-varying memory
    Cerqueti, Roy
    Mattera, Raffaele
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2023, 153 : 193 - 218
  • [4] Biological applications of time series frequency domain clustering
    Fokianos, Konstantinos
    Promponas, Vasilis J.
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (05) : 744 - 756
  • [5] Cophenetic-based fuzzy clustering of time series by linear dependency
    Alonso, Andres M.
    D'Urso, Pierpaolo
    Gamboa, Carolina
    Guerrero, Vanesa
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 137 : 114 - 136
  • [6] A Fuzzy Clustering Model for Multivariate Spatial Time Series
    Coppi, Renato
    D'Urso, Pierpaolo
    Giordani, Paolo
    JOURNAL OF CLASSIFICATION, 2010, 27 (01) : 54 - 88
  • [7] Incremental Clustering of Time-Series by Fuzzy Clustering
    Aghabozorgi, Saeed
    Saybani, Mahmoud Reza
    Teh, Ying Wah
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2012, 28 (04) : 671 - 688
  • [8] Incremental fuzzy clustering of time series *
    Wang, Ling
    Xu, Peipei
    Ma, Qian
    FUZZY SETS AND SYSTEMS, 2021, 421 : 62 - 76
  • [9] Copula-based fuzzy clustering of spatial time series
    Disegna, Marta
    D'Urso, Pierpaolo
    Durante, Fabrizio
    SPATIAL STATISTICS, 2017, 21 : 209 - 225
  • [10] Fuzzy clustering of time-series model to damage identification of structures
    Zeng, Yongping
    Yan, Yongyi
    Weng, Shun
    Sun, Yanhua
    Tian, Wei
    Yu, Hong
    ADVANCES IN STRUCTURAL ENGINEERING, 2019, 22 (04) : 868 - 881