Interaction between iron oxide nanoparticles (Fe3O4 NPs) and human neutrophils: Evidence that Fe3O4 NPs possess some pro-inflammatory activities

被引:7
|
作者
Saafane, Abdelaziz [1 ]
Girard, Denis [1 ,2 ]
机构
[1] Univ Quebec, Ctr Armand Frappier St Biotechnol, Lab Rech Inflammat & Physiol Granulocytes, INRS, Laval, PQ, Canada
[2] Ctr Armand Frappier St Biotechnol, Inst Natl Rech Sci INRS, 531 boul Prairies, Laval, PQ H7V 1B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Inflammation; Nanotoxicology; Neutrophils; Iron oxide nanoparticles; Apoptosis; NOVO PROTEIN-SYNTHESIS; ALBUM AGGLUTININ-I; SILVER NANOPARTICLES; GOLD NANOPARTICLES; CELLULAR UPTAKE; ACTIVATION; APOPTOSIS; CELLS; EXPOSURE; ADHESION;
D O I
10.1016/j.cbi.2022.110053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron oxide nanoparticles (Fe3O4 NPs) are important for different medical applications. However, potential toxicity has been reported and several parameters must still be studied to reach highest therapeutic efficacy with minimal undesired effects. Inflammation is one of the most reported undesired effects of NP exposure in a variety of inflammatory models and conflicting data exist regarding whether Fe3O4 NPs possess pro-or anti-inflammatory activities. The aim of this study was to determine the direct effect of Fe3O4 NPs on the biology of neutrophil, a key player cell in inflammation. Freshly isolated human neutrophils were incubated in vitro with Fe3O4 NPs, and several functions have been studied. Using transmission electronic microscopy, Fe3O4 NPs were found to be ingested by neutrophils. These NPs do not induce a respiratory burst by themselves, but they increase the ability of neutrophils to adhere onto human endothelial cells as well as enhance phagocytosis. An antibody array approach revealed that Fe3O4 NPs induce the production of some cytokines, including the chemokine IL-8 (CXCL8), which was confirmed by ELISA. Fe(3)O(4)NPs were found to delay spontaneous neutrophil apoptosis regardless of sex of the donor. Using a pharmacological approach, we demonstrate that Fe3O4 NPs delay apoptosis by a de novo protein synthesis-dependent mechanism and via different cell signalling pathways. The data indicate that Fe3O4 NPs can alter the biology of human neutrophils and that they possess some pro -inflammatory effects, particularly based on their capacity to delay apoptosis and to induce the production of pro-inflammatory cytokines. Therefore, Fe3O4 NPs can regulate inflammation by targeting human neutrophil functions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Synthesis and characterization of crystalline Fe3O4 nanoparticles
    Pachla, Anna
    Kielbasa, Karolina
    Lendzion-Bielun, Zofia
    PRZEMYSL CHEMICZNY, 2016, 95 (11): : 2311 - 2313
  • [32] Effect of Fe3O4 NPs on micellization and release behavior of CBABC-type pentablock copolymer
    Pal, Aniruddha
    Pal, Sagar
    POLYMER, 2017, 133 : 184 - 194
  • [33] Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties
    Shin, Naryeom
    Saravanakumar, Kandasamy
    Wang, Myeong-Hyeon
    JOURNAL OF CLUSTER SCIENCE, 2019, 30 (03) : 669 - 675
  • [34] Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties
    Naryeom Shin
    Kandasamy Saravanakumar
    Myeong-Hyeon Wang
    Journal of Cluster Science, 2019, 30 : 669 - 675
  • [35] Preparation of nearly monodispersed Fe3O4/SiO2 composite particles from aggregates of Fe3O4 nanoparticles
    Fu, Rong
    Jin, Xiumei
    Liang, Jinglun
    Zheng, Weishi
    Zhuang, Jiaqi
    Yang, Wensheng
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) : 15352 - 15356
  • [36] Fe3O4/Au/Fe3O4 nanoflowers exhibiting tunable saturation magnetization and enhanced bioconjugation
    Hui, Wenli
    Shi, Feng
    Yan, Kunping
    Peng, Mingli
    Cheng, Xiao
    Luo, Yanling
    Chen, Xuemei
    Roy, V. A. L.
    Cui, Yali
    Wang, Zuankai
    NANOSCALE, 2012, 4 (03) : 747 - 751
  • [37] Effect of surface modification of Fe3O4 nanoparticles on the preparation of Fe3O4/polystyrene composite particles via miniemulsion polymerization
    Yan, Feng
    Zheng, Xiuwen
    Sun, Zhaomei
    Zhao, Aihua
    POLYMER BULLETIN, 2012, 68 (05) : 1305 - 1314
  • [38] Influence of iron oxide nanoparticles (Fe3O4) on erythrocyte photohemolysis via photofrin and Rose Bengal sensitization
    Al-Akhras, M-Ali H.
    Aljarrah, Khaled
    Albiss, Borhan
    Al-Khalili, Duaa
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2017, 18 : 111 - 118
  • [39] Combined toxicity of Fe3O4 nanoparticles and cadmium chloride in mice
    Zhang, Yan
    Xu, Xiaolong
    Zhu, Shanshan
    Song, Jiajia
    Yan, Xincheng
    Gao, Shang
    TOXICOLOGY RESEARCH, 2016, 5 (05) : 1309 - 1317
  • [40] Spectroscopic and quantum chemical studies of interaction between the alginic acid and Fe3O4 nanoparticles
    Smilowicz, Malgorzata
    Pogorzelec-Glaser, Katarzyna
    Lapinski, Andrzej
    Motala, Rafal
    Grobela, Marcin
    Andrzejewski, Bartlomiej
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 182 : 1 - 7