Interaction between iron oxide nanoparticles (Fe3O4 NPs) and human neutrophils: Evidence that Fe3O4 NPs possess some pro-inflammatory activities

被引:7
|
作者
Saafane, Abdelaziz [1 ]
Girard, Denis [1 ,2 ]
机构
[1] Univ Quebec, Ctr Armand Frappier St Biotechnol, Lab Rech Inflammat & Physiol Granulocytes, INRS, Laval, PQ, Canada
[2] Ctr Armand Frappier St Biotechnol, Inst Natl Rech Sci INRS, 531 boul Prairies, Laval, PQ H7V 1B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Inflammation; Nanotoxicology; Neutrophils; Iron oxide nanoparticles; Apoptosis; NOVO PROTEIN-SYNTHESIS; ALBUM AGGLUTININ-I; SILVER NANOPARTICLES; GOLD NANOPARTICLES; CELLULAR UPTAKE; ACTIVATION; APOPTOSIS; CELLS; EXPOSURE; ADHESION;
D O I
10.1016/j.cbi.2022.110053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron oxide nanoparticles (Fe3O4 NPs) are important for different medical applications. However, potential toxicity has been reported and several parameters must still be studied to reach highest therapeutic efficacy with minimal undesired effects. Inflammation is one of the most reported undesired effects of NP exposure in a variety of inflammatory models and conflicting data exist regarding whether Fe3O4 NPs possess pro-or anti-inflammatory activities. The aim of this study was to determine the direct effect of Fe3O4 NPs on the biology of neutrophil, a key player cell in inflammation. Freshly isolated human neutrophils were incubated in vitro with Fe3O4 NPs, and several functions have been studied. Using transmission electronic microscopy, Fe3O4 NPs were found to be ingested by neutrophils. These NPs do not induce a respiratory burst by themselves, but they increase the ability of neutrophils to adhere onto human endothelial cells as well as enhance phagocytosis. An antibody array approach revealed that Fe3O4 NPs induce the production of some cytokines, including the chemokine IL-8 (CXCL8), which was confirmed by ELISA. Fe(3)O(4)NPs were found to delay spontaneous neutrophil apoptosis regardless of sex of the donor. Using a pharmacological approach, we demonstrate that Fe3O4 NPs delay apoptosis by a de novo protein synthesis-dependent mechanism and via different cell signalling pathways. The data indicate that Fe3O4 NPs can alter the biology of human neutrophils and that they possess some pro -inflammatory effects, particularly based on their capacity to delay apoptosis and to induce the production of pro-inflammatory cytokines. Therefore, Fe3O4 NPs can regulate inflammation by targeting human neutrophil functions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Biosynthesized Iron Oxide Nanoparticles (Fe3O4 NPs) Mitigate Arsenic Toxicity in Rice Seedlings
    Khan, Sehresh
    Akhtar, Nazneen
    Rehman, Shafiq Ur
    Shujah, Shaukat
    Rha, Eui Shik
    Jamil, Muhammad
    TOXICS, 2021, 9 (01) : 1 - 11
  • [2] In focus: Fe3O4 nanoparticles and human mesenteric artery interaction in vitro
    Vukova, Teodora I.
    Dimitrov, Stanislav D.
    Gagov, Hristo S.
    Dimitrova, Daniela Z.
    NANOMEDICINE, 2016, 11 (08) : 921 - 932
  • [3] Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs
    Shariatinia, Zahra
    Nikfar, Zahra
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 60 : 226 - 234
  • [4] Interaction of Iron Oxide Fe3O4 Nanoparticles and Alveolar Macrophages in Vivo
    Katsnelson, B. A.
    Privalova, L. I.
    Sutunkova, M. P.
    Tulakina, L. G.
    Pichugova, S. V.
    Beykin, J. B.
    Khodos, M. J.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2012, 152 (05) : 627 - 629
  • [5] In situ decorated Au NPs on pectin-modified Fe3O4 NPs as a novel magnetic nanocomposite (Fe3O4/Pectin/Au) for catalytic reduction of nitroarenes and investigation of its anti-human lung cancer activities
    Li, Yun
    Li, Na
    Jiang, Wei
    Ma, Guoyuan
    Zangeneh, Mohammad Mahdi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 163 : 2162 - 2171
  • [6] Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles
    Ghaemi, Maryam
    Absalan, Ghodratollah
    MICROCHIMICA ACTA, 2014, 181 (1-2) : 45 - 53
  • [7] Magnetic nanoparticles (Fe3O4 NPs) fabricated composite microgels and their applications in different fields
    Naseem, Khalida
    REVIEWS IN CHEMICAL ENGINEERING, 2023, 39 (02) : 175 - 201
  • [8] Functionalization of Fe3O4 nanoparticles
    Kale, Sonali K.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2018, 56 (09) : 728 - 731
  • [9] Environmental Effect of Magnetite Nanoparticles (Fe3O4 NPS) on Germination Rate and Seedling Growth from Bean
    Smiri, Moez
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2024, 33 (05): : 5284 - 5293
  • [10] Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles
    Zhang, Wei
    Shen, Fenglei
    Hong, Ruoyu
    PARTICUOLOGY, 2011, 9 (02) : 179 - 186