Numerical simulation of a 3-D gas-solid fluidized bed: Comparison of TFM and CPFD numerical approaches and experimental validation

被引:21
|
作者
Corcoles, J. I. [1 ,2 ]
Acosta-Iborra, A. [3 ]
Almendros-Ibanez, J. A. [1 ,2 ]
Sobrino, C. [3 ]
机构
[1] Univ Castilla La Mancha, ETS Ingenieros Ind, Dpto Mecan Aplicada & Ingn Proyectos, Campus Univ S-N, Albacete 02071, Spain
[2] Univ Castilla La Mancha, Renewable Energy Res Inst, Sect Solar & Energy Efficiency, C Invest S-N, Albacete 02071, Spain
[3] Univ Carlos III Madrid, ISE Res Grp, Thermal & Fluids Engn Dept, Avda Univ 30, Madrid 28911, Spain
关键词
Fluidized bed; Numerical simulation; Computational particles fluid dynamic; Bubbles; MAXIMUM-ENTROPY ESTIMATION; PARTICLE-SIZE DISTRIBUTION; BUBBLE-SIZE; MODEL; FLOW; VERIFICATION; REACTOR;
D O I
10.1016/j.apt.2021.08.029
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents the results of a 3-D numerical simulation of a freely bubbling fluidized bed, based on the Eulerian-Lagrangian approach, using the software Barracuda (CPFD-Barracuda). The main results obtained were assessed in terms of frequency analysis, bubble pierced length, bubble size, bubble passage frequency and bubble velocity. The results obtained were also compared with experimental data obtained in a 3-D fluidized bed using pressure and optical probes, and with the numerical results using the more common Eulerian-Eulerian approach, implemented in the commercial software Fluent (TFMFluent). The results show that CPFD-Barracuda satisfactorily predicts the global behaviour of bubbling beds with a low computational cost, although it computes smaller bubble sizes and lower bubble velocities than TFM-Fluent and experiments. Additionally, the spectra of pressure and particle volume fraction obtained with CPFD-Barracuda resemble those from the experiments and the TFM-Fluent simulations, but with a larger contribution of lower frequencies. The peaks of the pressure spectra from CPFDBarracuda are close to those from the experiments and the TFM-Fluent simulations, whereas those in the solid volume spectra seem to be underestimated by CPFD-Barracuda. The results also indicate that the particle fraction threshold value chosen to distinguish bubbles contours notably influences the results of the bubble characteristics, especially for TFM-Fluent, whereas CPFD-Barracuda is less sensitive to this threshold value. (c) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:3689 / 3705
页数:17
相关论文
共 50 条
  • [21] Investigation on gas-solid flow behavior in a multistage fluidized bed by using numerical simulation
    Wu, Gongpeng
    Chen, Wei
    He, Yan
    POWDER TECHNOLOGY, 2020, 364 : 251 - 263
  • [22] Modelling and validation of a gas-solid fluidized bed using advanced measurement techniques
    Uribe, Sebastian
    Taofeeq, Haidar
    Al-Dahhan, Muthanna
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (S1) : S272 - S287
  • [23] Comparison of Fully 3-D, Simplified 3-D and 2-D Numerical Simulations on a Circulating Fluidized Bed Boiler
    Li, Kun
    Cheng, Leming
    Ma, Zhangke
    Luo, Guanwen
    Li, Liyao
    Zhang, Qingyu
    Guo, Qiang
    Zhao, Liang
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (05) : 1832 - 1848
  • [24] Numerical simulation of gas-solid heat transfer behaviour in rectangular spouted bed
    Wang, Chunhua
    Zhong, Zhaoping
    Wang, Xiaoyi
    Alting, Siti Aisyah
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 93 (11) : 2077 - 2083
  • [25] Numerical Simulation of the Operating Conditions for the Reduction of Iron Ore Powder in a Fluidized Bed Based on the CPFD Method
    Wan, Zi-wei
    Huang, Jin-yu
    Zhu, Guo-min
    Xu, Qi-yan
    PROCESSES, 2022, 10 (09)
  • [26] CFD simulation of gas-solid fluidized bed hydrodynamics; prediction accuracy study
    Mofakham, Atefeh Sadri
    Rasteh, Mojtaba
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2023, 21 (03) : 391 - 407
  • [27] Bed to wall heat transfer in supercritical water fluidized bed: Comparison with the gas-solid fluidized bed
    Lu, Youjun
    Zhang, Tianning
    Dong, Xubin
    APPLIED THERMAL ENGINEERING, 2015, 88 : 297 - 305
  • [28] Numerical investigation of gas-solid flow hydrodynamics in a circulating fluidized bed
    Baysal, Oezguer
    Kosoglu, M. Fevzi
    Topal, Hueseyin
    Baskaya, Senol
    ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2007, 27 (02) : 21 - 32
  • [29] Simulation of 3D gas-solid fluidized bed reactor hydrodynamics
    Kumar, Umesh
    Agarwal, V. K.
    PARTICULATE SCIENCE AND TECHNOLOGY, 2017, 35 (01) : 1 - 13
  • [30] Numerical Simulation of Fluid Dynamics in a Two-Dimension Gas-Solid Bubbling Fluidized Bed
    Zeng, Tao
    Zhang, Xiang
    Lin, Hai Bo
    Zhou, Min
    Cheng, Kai
    HISTORY OF MECHANICAL TECHNOLOGY AND MECHANICAL DESIGN, 2011, 42 : 466 - 470