GW/PT Descendent Correspondence via Vertex Operators

被引:9
|
作者
Oblomkov, A. [1 ]
Okounkov, A. [2 ,3 ,4 ]
Pandharipande, R. [5 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Inst Problems Informat Transmiss, Moscow, Russia
[4] HSE, Lab Representat Theory & Math Phys, Moscow, Russia
[5] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
基金
俄罗斯科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
GROMOV-WITTEN THEORY; DONALDSON-THOMAS THEORY; VIRASORO CONSTRAINTS; HILBERT SCHEMES; STABLE PAIRS; CURVES; INVARIANTS; ALGEBRAS;
D O I
10.1007/s00220-020-03686-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an explicit formula for the GW/PT descendent correspondence in the stationary case for nonsingular connected projective threefolds. The formula, written in terms of vertex operators, is found by studying the 1-leg geometry. We prove the proposal for all nonsingular projective toric threefolds. An application to the Virasoro constraints for the stationary descendent theory of stable pairs will appear in a sequel.
引用
收藏
页码:1321 / 1359
页数:39
相关论文
共 43 条