Empirical Mode Decomposition - An Introduction

被引:0
|
作者
Zeiler, A. [1 ]
Faltermeier, R. [2 ]
Keck, I. R. [1 ]
Tome, A. M. [3 ]
Puntonet, C. G. [4 ]
Lang, E. W. [1 ]
机构
[1] Univ Regensburg, Dept Biophys, CIML Grp, D-93040 Regensburg, Germany
[2] Univ Hosp Regensburg, Clin Neurosurgery, D-93040 Regensburg, Germany
[3] Univ Aveiro, IEETA, DETI, P-3810 Aveiro, Portugal
[4] Univ Granada, ETSIIT, DATC, E-18071 Granada, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to external stimuli, biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with a Hilbert spectral transform, together called Hilbert-Huang Transform, is ideally suited to extract essential components which are characteristic of the underlying biological or physiological processes. The method is fully adaptive and generates the basis to represent the data solely from these data and based on them. The basis functions, called Intrinsic Mode Functions (IMFs) represent a complete set of locally orthogonal basis functions whose amplitude and frequency may vary over time. The contribution reviews the technique of EMD and related algorithms and discusses illustrative applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Succinct and fast empirical mode decomposition
    Li, Hongguang
    Hu, Yue
    Li, Fucai
    Meng, Guang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 879 - 895
  • [42] Objective Empirical Mode Decomposition metric
    Laszuk, Dawid
    Cadenas, Oswaldo
    Nasuto, Slawomir J.
    2015 38TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2015, : 504 - 507
  • [43] Knife Diagnostics with Empirical Mode Decomposition
    Cotogno, Michele
    Cocconcelli, Marco
    Rubini, Riccardo
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2016, 4 : 167 - 175
  • [44] Study on mode mixing problem of empirical mode decomposition
    Xu, Guimin
    Yang, Zhengxiang
    Wang, Sha
    PROCEEDINGS OF THE 2016 JOINT INTERNATIONAL INFORMATION TECHNOLOGY, MECHANICAL AND ELECTRONIC ENGINEERING, 2016, 59 : 389 - 394
  • [45] The complex bidimensional empirical mode decomposition
    Yeh, Min-Hung
    SIGNAL PROCESSING, 2012, 92 (02) : 523 - 541
  • [46] On the influence of sampling on the empirical mode decomposition
    Rilling, Gabriel
    Flandrin, Patrick
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2895 - 2898
  • [47] Empirical mode decomposition for infrared thermography
    Tian, Yu-Peng
    Zhou, Ke-Yin
    Ji-Juan
    Yu, Sheng-Lin
    Insight: Non-Destructive Testing and Condition Monitoring, 2006, 48 (08): : 477 - 480
  • [48] Empirical Mode Decomposition for Speech Enhancement
    Bouchair, Asma
    Amrouche, Abderrahmane
    Selouani, Sid-Ahmed
    Hamidia, Mahfoud
    PROCEEDINGS 2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2018, : 653 - 656
  • [49] ON THE FILTERING PROPERTIES OF THE EMPIRICAL MODE DECOMPOSITION
    Wu, Zhaohua
    Huang, Norden E.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2010, 2 (04) : 397 - 414
  • [50] Theoretical Analysis of Empirical Mode Decomposition
    Ge, Hengqing
    Chen, Guibin
    Yu, Haichun
    Chen, Huabao
    An, Fengping
    SYMMETRY-BASEL, 2018, 10 (11):