CONVERGENCE OF SELF-ADAPTIVE PROJECTION METHODS WITH LINEAR SEARCH FOR PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

被引:0
作者
Zhu, Li-Jun [1 ,2 ]
Postolache, Mihai [3 ,4 ,5 ,6 ]
She, Yaoyao [7 ]
机构
[1] North Minzu Univ, Key Lab Intelligent Informat & Big Data Proc Ning, Yinchuan 750021, Ningxia, Peoples R China
[2] North Minzu Univ, Hlth Big Data Res Inst, Yinchuan 750021, Ningxia, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[4] Asia Univ, Dept Interior Design, Taichung, Taiwan
[5] Gh Mihoc C Iacob Inst Math Stat & Appl Math, Romanian Acad, Bucharest 050711, Romania
[6] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
[7] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequality; fixed point; pseudomonotone operators; pseudocontractive operators; projection; linear search; GRADIENT METHODS; EXTRAGRADIENT METHOD; ITERATIVE ALGORITHM; THEOREMS; SYSTEMS; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pseudomonotone variational inequalities and fixed point problems are investigated in Hilbert spaces. We present a self-adaptive projection method with linear search for finding a common solution of the pseudomonotone variational inequalities and fixed points of pseudocontractive operators. We show the strong convergence of the suggested algorithm. Some related corollaries are also given.
引用
收藏
页码:1541 / 1554
页数:14
相关论文
共 38 条
[1]   TWO INERTIAL EXTRAGRADIENT VISCOSITY ALGORITHMS FOR SOLVING VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS [J].
Abbas, Mujahid ;
Iqbal, Hira .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (03) :377-398
[2]   SYSTEMS OF VARIATIONAL INEQUALITIES WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS FOR LIPSCHITZIAN PSEUDOCONTRACTIONS [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2019, 20 (01) :113-133
[3]   HYBRID VISCOSITY EXTRAGRADIENT METHOD FOR SYSTEMS OF VARIATIONAL INEQUALITIES, FIXED POINTS OF NONEXPANSIVE MAPPINGS, ZERO POINTS OF ACCRETIVE OPERATORS IN BANACH SPACES [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2018, 19 (02) :487-+
[4]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132
[5]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[6]   A Strongly Convergent Direct Method for Monotone Variational Inequalities in Hilbert Spaces [J].
Cruz, J. Y. Bello ;
Iusem, A. N. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (1-2) :23-36
[7]   Modified extragradient-like algorithms with new stepsizes for variational inequalities [J].
Dang Van Hieu ;
Pham Ky Anh ;
Le Dung Muu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) :913-932
[8]   The extragradient algorithm with inertial effects for solving the variational inequality [J].
Dong, Qiao-Li ;
Lu, Yan-Yan ;
Yang, Jinfeng .
OPTIMIZATION, 2016, 65 (12) :2217-2226
[9]   Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities [J].
Duong Viet Thong ;
Gibali, Aviv .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (01)
[10]   An approximate proximal-extragradient type method for monotone variational inequalities [J].
He, BS ;
Yang, ZH ;
Yuan, XM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (02) :362-374