Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules

被引:20
作者
Yao, Xiaohui [1 ,2 ]
Yan, Jingwen [1 ,2 ]
Liu, Kefei [2 ]
Kim, Sungeun [2 ,3 ]
Nho, Kwangsik [2 ]
Risacher, Shannon L. [2 ]
Greene, Casey S. [4 ]
Moore, Jason H. [5 ]
Saykin, Andrew J. [2 ]
Shen, Li [1 ,2 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Dept BioHlth Informat, Indianapolis, IN 46202 USA
[2] Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Indianapolis, IN 46202 USA
[3] SUNY Coll Oswego, Dept Elect & Comp Engn, Oswego, NY 13126 USA
[4] Univ Penn, Perelman Sch Med, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
关键词
MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; ASSOCIATION; CANCER; ONSET; LINK; SET;
D O I
10.1093/bioinformatics/btx344
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Network-based genome-wide association studies (GWAS) aim to identify functional modules from biological networks that are enriched by top GWAS findings. Although gene functions are relevant to tissue context, most existing methods analyze tissue-free networks without reflecting phenotypic specificity. Results: We propose a novel module identification framework for imaging genetic studies using the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize imaging GWAS findings by applying machine learning methods to incorporate network topological information and enhance the connectivity among top genes; (ii) detect densely connected modules based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules enriched by top GWAS findings. We demonstrate our method on the GWAS of [F-18] FDG-PET measures in the amygdala region using the imaging genetic data from the Alzheimer's Disease Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interaction network. The proposed network-based GWAS method can effectively detect densely connected modules enriched by top GWAS findings. Tissue-specific functional network can provide precise context to help explore the collective effects of genes with biologically meaningful interactions specific to the studied phenotype.
引用
收藏
页码:3250 / 3257
页数:8
相关论文
共 31 条
[21]   Association of cancer history with Alzheimer's disease onset and structural brain changes [J].
Nudelman, Kelly N. H. ;
Risacher, Shannon L. ;
West, John D. ;
McDonald, Brenna C. ;
Gao, Sujuan ;
Saykin, Andrew J. .
FRONTIERS IN PHYSIOLOGY, 2014, 5
[22]   Predictors of progression from mild cognitive impairment to Alzheimer disease [J].
Palmer, K. ;
Berger, A. K. ;
Monastero, R. ;
Winblad, B. ;
Bachman, L. ;
Fratiglioni, L. .
NEUROLOGY, 2007, 68 (19) :1596-1602
[23]   Neuroprotective effects of the Alzheimer's disease-related gene seladin-1 [J].
Peri, Alessandro ;
Serio, Mario .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2008, 41 (5-6) :251-261
[24]   Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity [J].
Poulin, Stephane P. ;
Dautoff, Rebecca ;
Morris, John C. ;
Barrett, Lisa Feldman ;
Dickerson, Bradford C. .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2011, 194 (01) :7-13
[25]   PLINK: A tool set for whole-genome association and population-based linkage analyses [J].
Purcell, Shaun ;
Neale, Benjamin ;
Todd-Brown, Kathe ;
Thomas, Lori ;
Ferreira, Manuel A. R. ;
Bender, David ;
Maller, Julian ;
Sklar, Pamela ;
de Bakker, Paul I. W. ;
Daly, Mark J. ;
Sham, Pak C. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (03) :559-575
[26]   Tumor Diagnosis Preceding Alzheimer's Disease Onset: Is There a Link Between Cancer and Alzheimer's Disease? [J].
Realmuto, Sabrina ;
Cinturino, Antonio ;
Arnao, Valentina ;
Mazzola, Maria Antonietta ;
Cupidi, Chiara ;
Aridon, Paolo ;
Ragonese, Paolo ;
Savettieri, Giovanni ;
D'Amelio, Marco .
JOURNAL OF ALZHEIMERS DISEASE, 2012, 31 (01) :177-182
[27]   Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans [J].
Saykin, Andrew J. ;
Shen, Li ;
Yao, Xiaohui ;
Kim, Sungeun ;
Nho, Kwangsik ;
Risacher, Shannon L. ;
Ramanan, Vijay K. ;
Foroud, Tatiana M. ;
Faber, Kelley M. ;
Sarwar, Nadeem ;
Munsie, Leanne M. ;
Hu, Xiaolan ;
Soares, Holly D. ;
Potkin, Steven G. ;
Thompson, Paul M. ;
Kauwe, John S. K. ;
Kaddurah-Daouk, Rima ;
Green, Robert C. ;
Toga, Arthur W. ;
Weiner, Michael W. .
ALZHEIMERS & DEMENTIA, 2015, 11 (07) :792-814
[28]   Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers [J].
Shen, Li ;
Thompson, Paul M. ;
Potkin, Steven G. ;
Bertram, Lars ;
Farrer, Lindsay A. ;
Foroud, Tatiana M. ;
Green, Robert C. ;
Hu, Xiaolan ;
Huentelman, Matthew J. ;
Kim, Sungeun ;
Kauwe, John S. K. ;
Li, Qingqin ;
Liu, Enchi ;
Macciardi, Fabio ;
Moore, Jason H. ;
Munsie, Leanne ;
Nho, Kwangsik ;
Ramanan, Vijay K. ;
Risacher, Shannon L. ;
Stone, David J. ;
Swaminathan, Shanker ;
Toga, Arthur W. ;
Weiner, Michael W. ;
Saykin, Andrew J. .
BRAIN IMAGING AND BEHAVIOR, 2014, 8 (02) :183-207
[29]   Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer's disease: a study of ADNI cohorts [J].
Song, Ailin ;
Yan, Jingwen ;
Kim, Sungeun ;
Risacher, Shannon Leigh ;
Wong, Aaron K. ;
Saykin, Andrew J. ;
Shen, Li ;
Greene, Casey S. .
BIODATA MINING, 2016, 9
[30]   Shape Abnormalities of Subcortical and Ventricular Structures in Mild Cognitive Impairment and Alzheimer's Disease: Detecting, Quantifying, and Predicting [J].
Tang, Xiaoying ;
Holland, Dominic ;
Dale, Anders M. ;
Younes, Laurent ;
Miller, Michael I. .
HUMAN BRAIN MAPPING, 2014, 35 (08) :3701-3725