Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum

被引:21
|
作者
Zhu, Shengfeng [1 ]
Liu, Chunxiao [2 ]
Wu, Qingbiao [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Shape optimization; Eigenvalue; Topology optimization; Binary level set method; Augmented Lagrangian method; Projection Lagrangian method; 2-DIMENSIONAL PHOTONIC CRYSTALS; MAXIMIZING BAND-GAPS; INVERSE PROBLEMS; DERIVATIVES; SCHEMES; DESIGN; EIGENVALUES; ALGORITHMS; LOADS; MODEL;
D O I
10.1016/j.cma.2010.06.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We optimize eigenvalues in optimal shape design using binary level set methods. The interfaces of sub-regions are represented implicitly by the discontinuities of binary level set functions taking two values 1 or 1 at convergence. A binary constraint is added to the original model problems. We propose two variational algorithms to solve the constrained optimization problems. One is a hybrid type by coupling the Lagrange multiplier approach for the geometry constraint with the augmented Lagrangian method for the binary constraint. The other is devised using the Lagrange multiplier method for both constraints. The two iterative algorithms are both largely independent of the initial guess and can satisfy the geometry constraint very accurately during the iterations. Intensive numerical results are presented and compared with those obtained by level set methods, which demonstrate the effectiveness and robustness of our algorithms. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2970 / 2986
页数:17
相关论文
共 50 条
  • [41] A level set-based parameterization method for structural shape and topology optimization
    Luo, Zhen
    Wang, Michael Yu
    Wang, Shengyin
    Wei, Peng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (01) : 1 - 26
  • [42] A level set method in shape and topology optimization for variational inequalities
    Fulmanski, Piotr
    Laurain, Antoine
    Scheid, Jean-Francois
    Sokolowski, Jan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (03) : 413 - 430
  • [43] Shape and topology optimization based on the convected level set method
    Kentaro Yaji
    Masaki Otomori
    Takayuki Yamada
    Kazuhiro Izui
    Shinji Nishiwaki
    Olivier Pironneau
    Structural and Multidisciplinary Optimization, 2016, 54 : 659 - 672
  • [44] Level Set Method for Shape and Topology Optimization of Contact Problems
    Myslinski, Andrzej
    SYSTEM MODELING AND OPTIMIZATION, 2009, 312 : 397 - 410
  • [45] A level set method for shape and topology optimization of coated structures
    Wang, Yaguang
    Kang, Zhan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 553 - 574
  • [46] A velocity field level set method for shape and topology optimization
    Wang, Yaguang
    Kang, Zhan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 115 (11) : 1315 - 1336
  • [47] Level set-based topology optimization for two dimensional turbulent flow using an immersed boundary method
    Kubo, Seiji
    Koguchi, Atsushi
    Yaji, Kentaro
    Yamada, Takayuki
    Izui, Kazuhiro
    Nishiwaki, Shinji
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [48] Topology optimization of Stokes eigenvalues by a level set method
    Li, Jiajie
    Qian, Meizhi
    Zhu, Shengfeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 188 : 50 - 71
  • [49] A NEW LEVEL SET BASED METHOD FOR TOPOLOGY OPTIMIZATION
    Wu, Tao
    Zhao, Yansong
    Peng, Ying
    Fu, Yu
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 580 - 592
  • [50] Structural shape and topology optimization based on level-set modelling and the element-propagating method
    Zhuang, Chungang
    Xiong, Zhenhua
    Ding, Han
    ENGINEERING OPTIMIZATION, 2009, 41 (06) : 537 - 555