A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger

被引:37
作者
Li, Lantian [1 ,2 ]
Wang, Zhenpo [1 ,2 ]
Gao, Feng [3 ]
Wang, Shuo [1 ,2 ]
Deng, Junjun [1 ,2 ]
机构
[1] Collaborat Innovat Ctr Elect Vehicles Beijing, 5 Zhongguancun St, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, 5 Zhongguancun St, Beijing 100081, Peoples R China
[3] Beijing Inst Space Launch Technol, Bldg 34,1 Nandahongmen Rd, Beijing 100076, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric vehicle; Capacitive power transfer; Compensation topology; Zero-voltage switching; TRANSFER SYSTEM; DESIGN;
D O I
10.1016/j.apenergy.2019.114156
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A large scale of electric vehicles can ideally maintain the stability of renewable power supply by acting as storage buffers for alleviating the intermittence in the integration of renewable energy sources for constructing a low-carbon energy system. However, the inconvenient conductive charging becomes a barrier in the popularization of electric vehicles. Wireless power transfer technology is in the spotlight because of the flexibility and convenience in powering electric vehicles. Recently, the Capacitive Power Transfer has received extensive attention due to simple coupler structure, rotatable coupler, and negligible heating of the metal foreign object. In the capacitive-based wireless charging system, the higher-order compensation topology is essential to enhance power transfer capability limited by the small coupling capacitance. However, with the increase of the resonant elements, the form of the resonant network becomes diverse. Currently, the researches focus on the characteristics of specific symmetrical compensation topologies. This paper presents a family of compensation topologies for the Capacitive Power Transfer system to achieve constant-voltage or constant-current output. A design procedure is summarized to construct the resonant networks, so as to design the compensation parameters. Considering the coupling capacitor variations caused by parking position deviation, a parameter tuning method is proposed to realize primary zero-voltage switching by adjusting the parameter of the double-sided inductor-capacitor-inductor-capacitor compensation topology. Experiments show that the prototype achieves constant-current output and zero-voltage switching when the coupling capacitance varies. The system efficiency reaches 93.57% at 1.5 kW input power with the input and output voltage around 250 V.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Compensation Parameters Optimization of Wireless Power Transfer for Electric Vehicles
    Wen, Feng
    Chu, Xiaohu
    Li, Qiang
    Gu, Wei
    ELECTRONICS, 2020, 9 (05)
  • [32] A nonlinear state-space model and control algorithm for a dynamic wireless power transfer system electric vehicle charger application
    Gomes, Zariff M.
    Moussa, Hassan
    Le Gall, Yann
    Prado, Edemar O.
    Damm, Gilney
    Pinheiro, Jose Renes
    Ripoll, Christophe
    CONTROL ENGINEERING PRACTICE, 2025, 158
  • [33] Optimization of Coils for Wireless Power Transfer System in Electric Vehicle
    Liu, Jie
    Wang, Zheng
    Cheng, Ming
    2018 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2018, : 2161 - 2165
  • [34] DC-to-DC Converter Topologies for Wireless Power Transfer in Electric Vehicles
    Elkhateb, Ahmad
    Adam, Grain
    Morrow, D. John
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 1665 - 1669
  • [35] A new capacitive coupler design for wireless capacitive power transfer applications
    Erel, Mehmet Zahid
    Bayindir, Kamil Cagatay
    Aydemir, Mehmet Timur
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2023, 40
  • [36] Magnetic Gear Wireless Power Transfer System: Prototype and Electric Vehicle Charging
    Dunlap, Caleb
    Van Neste, Charles W.
    ENERGIES, 2025, 18 (03)
  • [37] Simultaneous Wireless Power/Data Transfer for Electric Vehicle Charging
    Huang, Chih-Cheng
    Lin, Chun-Liang
    Wu, Yuan-Kang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (01) : 682 - 690
  • [38] Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging
    Miller, John M.
    Onar, Omer C.
    Chinthavali, Madhu
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2015, 3 (01) : 147 - 162
  • [39] High-Power Converters and Challenges in Electric Vehicle Wireless Charging - A Review
    Kodeeswaran, S.
    Gayathri, M. Nandhini
    Sanjeevikumar, P.
    Pena-Alzola, Rafael
    IETE JOURNAL OF RESEARCH, 2024, 70 (03) : 3167 - 3186
  • [40] A Solar Powered Wireless Power Transfer for Electric Vehicle Charging
    Kumar, Yakala Ravi
    Nayak, Debiprasad
    Kumar, Manish
    Pramanick, Sumit
    2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,