On analytic and meromorphic functions and spaces of QK-type

被引:89
作者
Essén, M
Wulan, H
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
关键词
D O I
10.1215/ijm/1258138477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a nondecreasing function K : [0, infinity) --> [0, infinity), we introduce a Mobius-invariant Banach space Q(K). of functions analytic in the unit disk in the plane. We develop a general theory of these spaces, which yields new results and also, for special choices of K, gives most basic properties of Q(p)-spaces. We have found a general criterion on the kernels K-1 and K-2, K-1 less than or equal to K-2, such that Q(K2) not subset of or equal to Q(K1), as well as necessary and sufficient conditions on K so that Q(K) = B or Q(K) = D, where the Bloch space 5 and the Dirichlet space D are the largest, respectively smallest:, spaces of Q(K)-type. We also consider the meromorphic counterpart Q(K)(#) of Q(K) and discuss the differences between Q(K)-spaces and Q(K)(#)-classes
引用
收藏
页码:1233 / 1258
页数:26
相关论文
共 23 条
[1]  
[Anonymous], 1980, ANALYTIC FUNCTIONS B
[2]  
ARAZY J, 1985, J REINE ANGEW MATH, V363, P110
[3]  
AULASKARI R, 1994, PITMAN RES, V359, P136
[4]   Carleson measures and some classes of meromorphic functions [J].
Aulaskari, R ;
Wulan, H ;
Zhao, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2329-2335
[5]  
Aulaskari R, 1996, ROCKY MT J MATH, V26, P485, DOI 10.1216/rmjm/1181072070
[6]  
Aulaskari R., 1995, Analysis, V15, P101, DOI DOI 10.1524/ANLY.1995.15.2.101
[8]  
Duren P. L., 1970, PURE APPL MATH, V38
[9]  
Essen M, 1997, J REINE ANGEW MATH, V485, P173
[10]  
ESSEN M, 2001, COMPLEX FUNCTION SPA, P9