Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system

被引:2
作者
Valenzuela, Luis Miguel [1 ]
Ble, Gamaliel [2 ]
Falconi, Manuel [3 ]
Guerrero, David [1 ]
机构
[1] UJAT, Div Acad Multidisciplinaria Jalpa de Mendez, Carretera NacajucaJalpa Mendez, Carretera Nacajuca Jalpa de Mendez, Jalpa De Mendez 86205, Tabasco, Mexico
[2] UJAT, Div Acad Ciencias Bas, Km 1 Carretera Cunduacan Jalpa, Cunduacan 86690, Tabasco, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
Lengyel-Epstein system; Oscillating reaction; Hopf bifurcation; Bautin bifurcation; CHEMICAL OSCILLATORS; DIOXIDE; STABILITY; PATTERNS; DESIGN; MODEL;
D O I
10.1007/s10910-019-01099-w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized Lengyel-Epstein oscillating reaction model is proposed and analyzed. The existence of limit cycles is proved using Hopf and Bautin bifurcation theory. We analyze the dynamics of the well known chlorine dioxide-iodine-malonic acid reaction, using a differential equations system. The numerical results are shown and these agree with the experimental data reported in the literature. We found that the oscillatory behavior depends on the stoichiometric coefficients and the reactant concentrations. This work gives valuable information for applications like design, optimization, dynamics and control of the industrial chemical reactors.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 17 条