Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon

被引:302
作者
Brown, Timothy P. [1 ]
Ganapathy, Vadivel [1 ]
机构
[1] Texas Tech Univ, Hlth Sci Ctr, Dept Cell Biol & Biochem, 3601 4th St, Lubbock, TX 79430 USA
基金
美国国家卫生研究院;
关键词
Lactate/GPR81; Acidic microenvironment; Nutrient supply; Angiogenesis; Immune evasion; Chemoresistance; MONOCARBOXYLATE TRANSPORTER 1; RENAL PEPTIDE TRANSPORTERS; AMINO-ACID TRANSPORTERS; SECRETED LACTIC-ACID; TUMOR-SUPPRESSOR; FOLATE TRANSPORTER; COLON-CANCER; FUNCTIONAL-CHARACTERIZATION; OLIGOPEPTIDE TRANSPORTER; AFFINITY TRANSPORTER;
D O I
10.1016/j.pharmthera.2019.107451
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Reprogramming of biochemical pathways is a hallmark of cancer cells, and generation of lactic acid from glucose/glutamine represents one of the consequences of suchmetabolic alterations. Cancer cells export lactic acid out to prevent intracellular acidification, not only increasing lactate levels but also creating an acidic pH in extracellular milieu. Lactate and protons in tumor microenvironment are not innocuous bystander metabolites but have special roles in promoting tumor-cell proliferation and growth. Lactate functions as a signaling molecule by serving as an agonist for the G-protein-coupled receptor GPR81, involving both autocrine and paracrine mechanisms. In the autocrine pathway, cancer cell-generated lactate activates GPR81 on cancer cells; in the paracrine pathway, cancer cell-generated lactate activates GPR81 on immune cells, endothelial cells, and adipocytes present in tumor stroma. The end result of GPR81 activation is promotion of angiogenesis, immune evasion, and chemoresistance. The acidic pH creates an inwardly directed proton gradient across the cancer-cell plasma membrane, which provides driving force for proton-coupled transporters in cancer cells to enhance supply of selective nutrients. There are several molecular targets in the pathways involved in the generation of lactic acid by cancer cells and its role in tumor promotion for potential development of novel anticancer therapeutics. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 150 条
[1]   An Autocrine Lactate Loop Mediates Insulin-Dependent Inhibition of Lipolysis through GPR81 [J].
Ahmed, Kashan ;
Tunaru, Sorin ;
Tang, Cong ;
Mueller, Michaela ;
Gille, Andreas ;
Sassmann, Antonia ;
Hanson, Julien ;
Offermanns, Stefan .
CELL METABOLISM, 2010, 11 (04) :311-319
[2]   The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms [J].
Andersen, Anne Poder ;
Samsoe-Petersen, Jacob ;
Oernbo, Eva Kjer ;
Boedtkjer, Ebbe ;
Moreira, Jose M. A. ;
Kveiborg, Marie ;
Pedersen, Stine Falsig .
INTERNATIONAL JOURNAL OF CANCER, 2018, 142 (12) :2529-2542
[3]   Transport of the Photodynamic Therapy Agent 5-Aminolevulinic Acid by Distinct H+-Coupled Nutrient Carriers Coexpressed in the Small Intestine [J].
Anderson, Catriona M. H. ;
Jevons, Mark ;
Thangaraju, Muthusamy ;
Edwards, Noel ;
Conlon, Nichola J. ;
Woods, Steven ;
Ganapathy, Vadivel ;
Thwaites, David T. .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2010, 332 (01) :220-228
[4]   H+/amino acid transporter 1 (PAT1) is the imino acid carrier:: An intestinal nutrient/drug transporter in human and rat [J].
Anderson, CMH ;
Grenade, DS ;
Boll, M ;
Foltz, M ;
Wake, KA ;
Kennedy, DJ ;
Munck, LK ;
Miyauchi, S ;
Taylor, PM ;
Campbell, FC ;
Munck, BG ;
Daniel, H ;
Ganapathy, V ;
Thwaites, DT .
GASTROENTEROLOGY, 2004, 127 (05) :1410-1422
[5]   Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments [J].
Angelin, Alessia ;
Gil-de-Gomez, Luis ;
Dahiya, Satinder ;
Jiao, Jing ;
Guo, Lili ;
Levine, Matthew H. ;
Wang, Zhonglin ;
Quinn, William J., III ;
Kopinski, Piotr K. ;
Wang, Liqing ;
Akimova, Tatiana ;
Liu, Yujie ;
Bhatti, Tricia R. ;
Han, Rongxiang ;
Laskin, Benjamin L. ;
Baur, Joseph A. ;
Blair, Ian A. ;
Wallace, Douglas C. ;
Hancock, Wayne W. ;
Beier, Ulf H. .
CELL METABOLISM, 2017, 25 (06) :1282-+
[6]   Urate Transporters: An Evolving Field [J].
Anzai, Naohiko ;
Endou, Hitoshi .
SEMINARS IN NEPHROLOGY, 2011, 31 (05) :400-409
[7]   Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies [J].
Apicella, Maria ;
Giannoni, Elisa ;
Fiore, Stephany ;
Ferrari, Karin Johanna ;
Fernandez-Perez, Daniel ;
Isella, Claudio ;
Granchi, Carlotta ;
Minutolo, Filippo ;
Sottile, Antonino ;
Comoglio, Paolo Maria ;
Medico, Enzo ;
Pietrantonio, Filippo ;
Volante, Marco ;
Pasini, Diego ;
Chiarugi, Paola ;
Giordano, Silvia ;
Corso, Simona .
CELL METABOLISM, 2018, 28 (06) :848-+
[8]   Lactate promotes glioma migration by TGF-β2-dependent regulation of matrix metalloproteinase-2 [J].
Baumann, Fusun ;
Leukel, Petra ;
Doerfelt, Anett ;
Beier, Christoph P. ;
Dettmer, Katja ;
Oefner, Peter J. ;
Kastenberger, Michael ;
Kreutz, Marina ;
Nickl-Jockschat, Thomas ;
Bogdahn, Ulrich ;
Bosserhoff, Anja-Katrin ;
Hau, Peter .
NEURO-ONCOLOGY, 2009, 11 (04) :368-380
[9]   Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD plus Depletion in Cancer Cells [J].
Benjamin, Don ;
Robay, Dimitri ;
Hindupur, Sravanth K. ;
Pohlmann, Jens ;
Colombi, Marco ;
El-Shemerly, Mahmoud Y. ;
Maira, Sauveur-Michel ;
Moroni, Christoph ;
Lane, Heidi A. ;
Hall, Michael N. .
CELL REPORTS, 2018, 25 (11) :3047-+
[10]   Glutamine transporters in mammalian cells and their functions in physiology and cancer [J].
Bhutia, Yangzom D. ;
Ganapathy, Vadivel .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2016, 1863 (10) :2531-2539