On the global existence and time decay estimates in critical spaces for the Navier-Stokes-Poisson system

被引:20
作者
Chikami, Noboru [1 ]
Danchin, Raphael [2 ,3 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
[2] Univ Paris Est, UMR 8050, LAMA, 61 Ave Gen Gaulle, F-94010 Creteil, France
[3] Inst Univ France, 61 Ave Gen Gaulle, F-94010 Creteil, France
关键词
Compressible Navier-Stokes-Poisson system; Besov spaces; critical regularity; decay estimates; WELL-POSEDNESS; EQUATIONS;
D O I
10.1002/mana.201600238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with the study of the Cauchy problem for the Navier-Stokes-Poisson system in the critical regularity framework. In the case of a repulsive potential, we first establish the unique global solvability in any dimension n >= 2 for small perturbations of a linearly stable constant state. Next, under a suitable additional condition involving only the low frequencies of the data and in the L-2-critical framework (for simplicity), we exhibit optimal decay estimates for the constructed global solutions, which are similar to those of the barotropic compressible Navier-Stokes system. Our results rely on new a priori estimates for the linearized Navier-Stokes-Poisson system about a stable constant equilibrium, and on a refined time-weighted energy functional. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1939 / 1970
页数:32
相关论文
共 27 条
[1]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[2]   Long Time Behavior of Weak Solutions to Navier-Stokes-Poisson System [J].
Bella, Peter .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (02) :279-294
[3]  
Chandrasekhar S., 1957, An Introduction to the Study of Stellar Structure
[4]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[5]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[6]  
Chen QL, 2010, REV MAT IBEROAM, V26, P915
[7]  
Chikami N., J EVOLUTION IN PRESS
[8]  
Chikami N, 2014, DIFFER INTEGRAL EQU, V27, P801
[9]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[10]  
Danchin R., ARXIV150702637