Motivation detection using EEG signal analysis by residual-in-residual convolutional neural network

被引:15
|
作者
Chattopadhyay, Soham [1 ]
Zary, Laila [2 ]
Quek, Chai [2 ]
Prasad, Dilip K. [3 ]
机构
[1] Jadavpur Univ, Dept Elect Engn, 12 CIT Rd, Kolkata 700054, India
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] UiT Arctic Univ Norway, Dept Comp Sci, Hansine Hansens Veg 18, N-9019 Tromso, Norway
关键词
EEG; Motivation; Deep learning; ASYMMETRY; EMOTION; SYSTEM;
D O I
10.1016/j.eswa.2021.115548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While we know that motivated students learn better than non-motivated students but detecting motivation is challenging. Here we present a game-based motivation detection approach from the EEG signals. We take an original approach of using EEG-based brain computer interface to assess if motivation state is manifest in physiological EEG signals as well, and what are suitable conditions in order to achieve the goal? To the best of our knowledge, detection of motivation level from brain signals is proposed for the first time in this paper. In order to resolve the central obstacle of small EEG datasets containing deep features, we propose a novel and unique 'residual-in-residual architecture of convolutional neural network (RRCNN)' that is capable of reducing the problem of over-fitting on small datasets and vanishing gradient. Having accomplished this, several aspects of using EEG signals for motivation detection are considered, including channel selection and accuracy obtained using alpha or beta waves of EEG signals. We also include a detailed validation of the different aspects of our methodology, including detailed comparison with other works as relevant. Our approach achieves 89% accuracy in using EEG signals to detect motivation state while learning, where alpha wave signals of frontal asymmetry channels are employed. A more robust (less sensitive to learning conditions) 88% accuracy is achieved using beta waves signals of frontal asymmetry channels. The results clearly indicate the potential of detecting motivation states using EEG signals, provided suitable methodologies such as proposed in this paper, are employed.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Gaze Estimation Using Residual Neural Network
    Wong, En Teng
    Yean, Seanglidet
    Hu, Qingyao
    Lee, Bu Sung
    Liu, Jigang
    Deepu, Rajan
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 411 - 414
  • [42] Defect Analysis of Inner-Wall of Pipes by Differentiated Residual Blocks of Convolutional Neural Network
    An Nguyen
    Yoshitaka, Atsuo
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 269 - 273
  • [43] Intracerebral hemorrhage detection on computed tomography images using a residual neural network
    Altuve, Miguel
    Perez, Ana
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 99 : 113 - 119
  • [44] NEURAL NETWORK CLASSIFICATION OF EEG SIGNAL FOR THE DETECTION OF SEIZURE
    Yasmeen, Shaguftha
    Karki, Maya V.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 553 - 558
  • [45] Detection of atrial fibrillation from cardiac signal using convolutional neural network
    Mohapatra S.K.
    Mohanty M.N.
    International Journal of Innovative Computing and Applications, 2022, 13 (03): : 172 - 179
  • [46] Analysis of image forgery detection using convolutional neural network
    Gnaneshwar C.
    Singh M.K.
    Yadav S.S.
    Balabantaray B.K.
    International Journal of Applied Systemic Studies, 2022, 9 (03) : 240 - 260
  • [47] Dilated Convolution and Residual Network based Convolutional Neural Network for Recognition of Disastrous Events
    Shafique, Dania
    Akram, Muhammad Usman
    Hassan, Taimur
    Anwar, Tahira
    Salam, Anum Abdul
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE), 2022,
  • [48] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319
  • [49] EEG Signal Analysis for Automated Epilepsy Seizure Detection Using Wavelet Transform and Artificial Neural Network
    Vani, S.
    Suresh, G. R.
    Balakumaran, T.
    Ashawise, Cross T.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (06) : 1301 - 1306
  • [50] Automatic Sleep Staging Method Using EEG Based on STFT and Residual Network
    Zhang, Ran
    Jiang, Rui
    Hu, Haowei
    Gao, Ying
    Xia, Wei
    Song, Boming
    IEEE ACCESS, 2025, 13 : 1778 - 1789