Motivation detection using EEG signal analysis by residual-in-residual convolutional neural network

被引:15
|
作者
Chattopadhyay, Soham [1 ]
Zary, Laila [2 ]
Quek, Chai [2 ]
Prasad, Dilip K. [3 ]
机构
[1] Jadavpur Univ, Dept Elect Engn, 12 CIT Rd, Kolkata 700054, India
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] UiT Arctic Univ Norway, Dept Comp Sci, Hansine Hansens Veg 18, N-9019 Tromso, Norway
关键词
EEG; Motivation; Deep learning; ASYMMETRY; EMOTION; SYSTEM;
D O I
10.1016/j.eswa.2021.115548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While we know that motivated students learn better than non-motivated students but detecting motivation is challenging. Here we present a game-based motivation detection approach from the EEG signals. We take an original approach of using EEG-based brain computer interface to assess if motivation state is manifest in physiological EEG signals as well, and what are suitable conditions in order to achieve the goal? To the best of our knowledge, detection of motivation level from brain signals is proposed for the first time in this paper. In order to resolve the central obstacle of small EEG datasets containing deep features, we propose a novel and unique 'residual-in-residual architecture of convolutional neural network (RRCNN)' that is capable of reducing the problem of over-fitting on small datasets and vanishing gradient. Having accomplished this, several aspects of using EEG signals for motivation detection are considered, including channel selection and accuracy obtained using alpha or beta waves of EEG signals. We also include a detailed validation of the different aspects of our methodology, including detailed comparison with other works as relevant. Our approach achieves 89% accuracy in using EEG signals to detect motivation state while learning, where alpha wave signals of frontal asymmetry channels are employed. A more robust (less sensitive to learning conditions) 88% accuracy is achieved using beta waves signals of frontal asymmetry channels. The results clearly indicate the potential of detecting motivation states using EEG signals, provided suitable methodologies such as proposed in this paper, are employed.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Light Field Angular Super-Resolution using Convolutional Neural Network with Residual Network
    Kim, Dong-Myung
    Kang, Hyun-Soo
    Hong, Jang-Eui
    Suh, Jae-Won
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2019), 2019, : 595 - 597
  • [22] Atrial Fibrillation Detection Using an Improved Multi-Scale Decomposition Enhanced Residual Convolutional Neural Network
    Cao, Xin-Cheng
    Yao, Bin
    Chen, Bin-Qiang
    IEEE ACCESS, 2019, 7 : 89152 - 89161
  • [23] Residual shallow convolutional neural network to classify microcalcifications clusters in digital mammograms
    Lozoya, Ricardo Salvador Luna
    Dominguez, Humberto de Jesus Ochoa
    Azuela, Juan Humberto Sossa
    Sanchez, Vianey Guadalupe Cruz
    Villegas, Osslan Osiris Vergara
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [24] Adaptive Residual Convolutional Neural Network for Hyperspectral Image Classification
    Huang, Hong
    Pu, Chunyu
    Li, Yuan
    Duan, Yule
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2520 - 2531
  • [25] Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation
    Pawar, Kamlesh
    Chen, Zhaolin
    Shah, N. Jon
    Egan, Gary
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 263 - 273
  • [26] Depression diagnosis using a hybrid residual neural network
    Rezaei, Mahsa Ofoghi
    Makouei, Somayeh
    Danishvar, Sebelan
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 42 (03) : 244 - 261
  • [27] Schizophrenia Detection on EEG Signals Using an Ensemble of a Lightweight Convolutional Neural Network
    Hussain, Muhammad
    Alsalooli, Noudha Abdulrahman
    Almaghrabi, Norah
    Qazi, Emad-ul-Haq
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [28] Scalp EEG-Based Pain Detection Using Convolutional Neural Network
    Chen, Duo
    Zhang, Haihong
    Kavitha, Perumpadappil Thomas
    Loy, Fong Ling
    Ng, Soon Huat
    Wang, Chuanchu
    Phua, Kok Soon
    Tjan, Soon Yin
    Yang, Su-Yin
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 274 - 285
  • [29] Emotion Recognition from EEG Using All-Convolution Residual Neural Network
    Xuan, Hongyuan
    Liu, Jing
    Yang, Penghui
    Gu, Guanghua
    Cui, Dong
    HUMAN BRAIN AND ARTIFICIAL INTELLIGENCE, HBAI 2022, 2023, 1692 : 73 - 85
  • [30] Residual neural network-based fully convolutional network for microstructure segmentation
    Jang, Junmyoung
    Van, Donghyun
    Jang, Hyojin
    Baik, Dae Hyun
    Yoo, Sang Duk
    Park, Jaewoong
    Mhin, Sungwook
    Mazumder, Jyoti
    Lee, Seung Hwan
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2020, 25 (04) : 282 - 289