Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries

被引:107
作者
Sheng, Jian [1 ]
Yang, Leping [1 ]
Zhu, Yuan-En [1 ]
Li, Feng [1 ]
Zhang, Yue [1 ]
Zhou, Zhen [1 ]
机构
[1] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin Key Lab Met & Mol Based Mat Chem, Sch Mat Sci & Engn,Natl Inst Adv Mat,Inst New Ene, Tianjin 300350, Peoples R China
关键词
ELECTROCHEMICAL ENERGY-STORAGE; REDUCED GRAPHENE OXIDE; CYCLING STABILITY; STRONGLY BINDING; RATE CAPABILITY; HIGH-CAPACITY; PERFORMANCE; NANOPARTICLES; NITROGEN; LITHIUM;
D O I
10.1039/c7ta06577a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By virtue of abundant sodium resources and low cost, sodium-ion batteries have been considered as a promising candidate compared with the prevailing lithium-ion batteries. However, substantial volume changes and sluggish sodiation kinetics limit their practical application. Here, we designed and prepared a hybrid architecture of oriented tin(II) sulfide nanoflakes bound on S-doped N-rich carbon nanosheets (SnS/CNS) via a facile sol-gel and hydrothermal route. The functional carbon nanosheets not only strengthen the interaction with SnS, but also enhance the conductivity and pseudocapacitance of the composite. This unique SnS/CNS anode delivers a high reversible capacity of 654 mA h g(-1) and excellent rate capabilities of 487 and 250.7 mA h g(-1) at current densities of 1 and 20 A g(-1), respectively. Further kinetic analyses reveal that the pseudocapacitive contribution accounts for fast Na+ storage at high rates.
引用
收藏
页码:19745 / 19751
页数:7
相关论文
共 43 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [3] Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries
    Balogun, Muhammad-Sadeeq
    Luo, Yang
    Lyu, Feiyi
    Wang, Fuxin
    Yang, Hao
    Li, Haibo
    Liang, Chaolun
    Huang, Miao
    Huang, Yongchao
    Tong, Yexiang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (15) : 9733 - 9744
  • [4] A review of carbon materials and their composites with alloy metals for sodium ion battery anodes
    Balogun, Muhammad-Sadeeq
    Luo, Yang
    Qiu, Weitao
    Liu, Peng
    Tong, Yexiang
    [J]. CARBON, 2016, 98 : 162 - 178
  • [5] Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
  • [6] L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries
    Chang, Kun
    Chen, Weixiang
    [J]. ACS NANO, 2011, 5 (06) : 4720 - 4728
  • [7] Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays
    Chao, Dongliang
    Liang, Pei
    Chen, Zhen
    Bai, Linyi
    Shen, He
    Liu, Xiaoxu
    Xia, Xinhui
    Zhao, Yanli
    Savilov, Serguei V.
    Lin, Jianyi
    Shen, Ze Xiang
    [J]. ACS NANO, 2016, 10 (11) : 10211 - 10219
  • [8] Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
    Chao, Dongliang
    Zhu, Changrong
    Yang, Peihua
    Xia, Xinhui
    Liu, Jilei
    Wang, Jin
    Fan, Xiaofeng
    Savilov, Serguei V.
    Lin, Jianyi
    Fan, Hong Jin
    Shen, Ze Xiang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes
    Chen, Tingting
    Ma, Yifan
    Guo, Qiubo
    Yang, Mei
    Xia, Hui
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) : 3179 - 3185
  • [10] Challenges for Na-ion Negative Electrodes
    Chevrier, V. L.
    Ceder, G.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) : A1011 - A1014