A comparison between Neumann and Steklov eigenvalues

被引:1
|
作者
Henrot, Antoine [1 ]
Michetti, Marco [2 ]
机构
[1] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[2] Univ Paris Saclay, Lab Math Orsay, F-91405 Orsay, France
关键词
Neumann eigenvalue; Steklov eigenvalue; ratio of eigenvalues; HOT-SPOTS; STABILITY; MEMBRANE; DOMAIN;
D O I
10.4171/JST/429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to a comparison between the normalized first (non-trivial) Neumann eigenvalue IseI mu 1(se) for a Lipschitz open set se in the plane and the normalized first (non-trivial) Steklov eigenvalue P (se)o-1(se). More precisely, we study the ratio F(se) := IseI mu 1(se)/P(se)o-1(se). We prove that this ratio can take arbitrarily small or large values if we do not put any restriction on the class of sets se. Then we restrict ourselves to the class of plane convex domains for which we get explicit bounds. We also study the case of thin convex domains for which we give more precise bounds. The paper finishes with the plot of the corresponding Blaschke-Santalo diagrams (x, y) = (IseI mu 1(se), P (se)o-1(se)).
引用
收藏
页码:1405 / 1442
页数:38
相关论文
共 50 条
  • [1] Optimization of Steklov-Neumann eigenvalues
    Ammaria, Habib
    Imeri, Kthim
    Nigam, Nilima
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 406
  • [2] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [3] Shape optimization for low Neumann and Steklov eigenvalues
    Girouard, Alexandre
    Polterovich, Iosif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (04) : 501 - 516
  • [4] Neumann to Steklov eigenvalues: asymptotic and monotonicity results
    Lamberti, Pier Domenico
    Provenzano, Luigi
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 429 - 447
  • [5] Estimates on the Neumann and Steklov principal eigenvalues of collapsing domains
    Acampora, P.
    Amato, V.
    Cristoforoni, E.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,
  • [6] COMPARISON OF STEKLOV EIGENVALUES AND LAPLACIAN EIGENVALUES ON GRAPHS
    Shi, Yongjie
    Yu, Chengjie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1505 - 1517
  • [7] The Neumann problem for the Henon equation, trace inequalities and Steklov eigenvalues
    Gazzini, Marita
    Serra, Enrico
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02): : 281 - 302
  • [8] Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds
    Xiong, Changwei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (12) : 3245 - 3258
  • [9] Exterior Steklov eigenvalues and modified exterior Steklov eigenvalues in inverse scattering
    Li, Yuan
    INVERSE PROBLEMS, 2020, 36 (10)
  • [10] Nonresonance between the first two eigenvalues for a Steklov problem
    Anane, Aomar
    Chakrone, Omar
    Karim, Belhadj
    Zerouali, Abdellah
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) : 2974 - 2981