Cell-Cycle Position of Single MYC-Driven Cancer Cells Dictates Their Susceptibility to a Chemotherapeutic Drug

被引:53
作者
Ryl, Tatsiana [1 ,2 ]
Kuchen, Erika E. [1 ,2 ]
Bell, Emma [3 ]
Shao, Chunxuan [1 ,2 ]
Florez, Andres F. [1 ,2 ]
Moenke, Gregor [1 ,2 ,4 ]
Gogolin, Sina [3 ]
Friedrich, Mona [3 ]
Lamprecht, Florian [1 ,2 ]
Westermann, Frank [3 ]
Hoefer, Thomas [1 ,2 ]
机构
[1] German Canc Res Ctr, Div Theoret Syst Biol, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Bioquant Ctr, D-69120 Heidelberg, Germany
[3] German Canc Res Ctr, Neuroblastoma Genom, D-69120 Heidelberg, Germany
[4] EMBL, Dev Biol Unit, D-69117 Heidelberg, Germany
关键词
NEUROBLASTOMA-CELLS; DNA-REPAIR; C-MYC; ACTIVATION; EXPRESSION; REPRESSION; GENES; TRANSCRIPTION; PROGRESSION; MECHANISMS;
D O I
10.1016/j.cels.2017.07.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While many tumors initially respond tochemotherapy, regrowth of surviving cells compromises treatment efficacy in the long term. The cell-biological basis of this regrowth is not understood. Here, we characterize the response of individual, patient-derived neuroblastoma cells driven by the prominent oncogene MYC to the first-line chemotherapy, doxorubicin. Combining live-cell imaging, cell-cycle-resolved transcriptomics, and mathematical modeling, we demonstrate that a cell's treatment response is dictated by its expression level of MYC and its cell-cycle position prior to treatment. All low-MYC cells enter therapy-induced senescence. High-MYC cells, by contrast, disable their cell-cycle checkpoints, forcing renewed proliferation despite treatment-induced DNA damage. After treatment, the viability of high-MYC cells depends on their cell-cycle position during treatment: newborn cells promptly halt in G1 phase, repair DNA damage, and form re-growing clones; all other cells show protracted DNA repair and ultimately die. These findings demonstrate that fast-proliferating tumor cells may resist cytotoxic treatment non-genetically, by arresting within a favorable window of the cell cycle.
引用
收藏
页码:237 / +
页数:22
相关论文
共 63 条
[1]   p21 in cancer: intricate networks and multiple activities [J].
Abbas, Tarek ;
Dutta, Anindya .
NATURE REVIEWS CANCER, 2009, 9 (06) :400-414
[2]  
Amati B., 1998, Front Biosci, V3, pd250, DOI DOI 10.2741/A239
[3]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[4]   A Dynamical Framework for the All-or-None G1/S Transition [J].
Barr, Alexis R. ;
Heldt, Frank S. ;
Zhang, Tongli ;
Bakal, Chris ;
Novak, Bela .
CELL SYSTEMS, 2016, 2 (01) :27-37
[5]   Target for cancer therapy: proliferating cells or stem cells [J].
Blagosklonny, MV .
LEUKEMIA, 2006, 20 (03) :385-391
[6]   Hybrid Models and Biological Model Reduction with PyDSTool [J].
Clewley, Robert .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (08)
[7]   Exploiting replicative stress to treat cancer [J].
Dobbelstein, Matthias ;
Sorensen, Claus Storgaard .
NATURE REVIEWS DRUG DISCOVERY, 2015, 14 (06) :405-423
[8]   Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma [J].
Duffy, David J. ;
Krstic, Aleksandar ;
Halasz, Melinda ;
Schwarzl, Thomas ;
Fey, Dirk ;
Iljin, Kristiina ;
Mehta, Jai Prakash ;
Killick, Kate ;
Whilde, Jenny ;
Turriziani, Benedetta ;
Haapa-Paananen, Saija ;
Fey, Vidal ;
Fischer, Matthias ;
Westermann, Frank ;
Henrich, Kai-Oliver ;
Bannert, Steffen ;
Higgins, Desmond G. ;
Kolch, Walter .
ONCOTARGET, 2015, 6 (41) :43182-43201
[9]   Regulation of BIRC5 and its isoform BIRC5-2B in neuroblastoma [J].
Eckerle, Isabella ;
Muth, Daniel ;
Batzler, Julia ;
Henrich, Kai-Oliver ;
Lutz, Werner ;
Fischer, Matthias ;
Witt, Olaf ;
Schwab, Manfred ;
Westermann, Frank .
CANCER LETTERS, 2009, 285 (01) :99-107
[10]   WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION [J].
ELDEIRY, WS ;
TOKINO, T ;
VELCULESCU, VE ;
LEVY, DB ;
PARSONS, R ;
TRENT, JM ;
LIN, D ;
MERCER, WE ;
KINZLER, KW ;
VOGELSTEIN, B .
CELL, 1993, 75 (04) :817-825