Low-Power True Random Number Generator Based on Randomly Distributed Carbon Nanotube Networks

被引:7
|
作者
Kim, Sungho [1 ]
Kim, Moon-Seok [2 ,3 ]
Lee, Yongwoo [4 ]
Kim, Hee-Dong [1 ]
Choi, Yang-Kyu [2 ]
Choi, Sung-Jin [4 ]
机构
[1] Sejong Univ, Dept Elect Engn & Convergence Engn Intelligent Dr, Seoul 05006, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
[3] ETRI, Daejeon 34141, South Korea
[4] Kookmin Univ, Sch Elect Engn, Seoul 02707, South Korea
基金
新加坡国家研究基金会;
关键词
Transistors; Generators; Tunneling; Surface treatment; Memristors; Electron traps; Thermal stability; Carbon nanotube network; random number generator; stochastic carrier trapping;
D O I
10.1109/ACCESS.2021.3091491
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although the intrinsic variability in nanoelectronic devices has been a major obstacle and has prevented mass production, this natural stochasticity can be an asset in hardware security applications. Herein, we demonstrate a true random number generator (TRNG) based on stochastic carrier trapping/detrapping processes in randomly distributed carbon nanotube networks. The bitstreams collected from the TRNG passed all the National Institute of Standards and Technology randomness tests without post-processing. The random bit generated in this study is sufficient for encryption applications, particularly those related to the Internet of Things and edge computing, which require significantly lower power consumption.
引用
收藏
页码:91341 / 91346
页数:6
相关论文
共 46 条
  • [1] An Asynchronous and Low-Power True Random Number Generator Using STT-MTJ
    Perach, Ben
    Kvatinsky, Shahar
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2019, 27 (11) : 2473 - 2484
  • [2] An Asynchronous and Low-Power True Random Number Generator Using STT-MTJ
    Perach, Ben
    Kvatinsky, Shahar
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [3] STAMP: A Real-Time and Low-Power Sampling Error Based Stochastic Number Generator
    Karadeniz, Mahmut Burak
    Cevik, Ismail
    Altun, Mustafa
    IEEE ACCESS, 2021, 9 : 151363 - 151372
  • [4] Design of Low-Power Random Number Generator Using Signal Quantization Error in Smart Grid
    Fujdiak, Radek
    Mlynek, Petr
    Misurec, Jiri
    Masek, Pavel
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 7 - 10
  • [5] An Analysis of DCM-Based True Random Number Generator
    Fujieda, Naoki
    Takeda, Masaaki
    Ichikawa, Shuichi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (06) : 1109 - 1113
  • [6] A Compact Low-Voltage True Random Number Generator Based on Inkjet Printing Technology
    Erozan, Ahmet Turan
    Wang, Guan Ying
    Bishnoi, Rajendra
    Aghassi-Hagmann, Jasmin
    Tahoori, Mehdi B.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (06) : 1485 - 1495
  • [7] 16.8 Tb/s True Random Number Generator Based on Amplified Spontaneous Emission
    Cao, Guangshuo
    Zhang, Liuming
    Huang, Xinran
    Hu, Weisheng
    Yang, Xuelin
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (14) : 699 - 702
  • [8] A True Random Number Generator Based on Gait Data for the Internet of You
    Camara, Carmen
    Martin, Honorio
    Peris-Lopez, Pedro
    Entrena, Luis
    IEEE ACCESS, 2020, 8 : 71642 - 71651
  • [9] An ultra-low power CMOS random number generator
    Zhou, Sheng-hua
    Zhang, Wancheng
    Wu, Nan-Jian
    SOLID-STATE ELECTRONICS, 2008, 52 (02) : 233 - 238
  • [10] Ultrafast ∼7 Mbps True Random Number Generator Based on SNGCT Selector
    Guy, Jeremy
    Ambrosi, Elia
    Wu, Cheng-Hsien
    Bao, Xinyu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2794 - 2800