Continued fractions and the Markoff tree

被引:31
作者
Bombieri, Enrico [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
关键词
diophantine approximation; lagrange spectrum; continued fractions;
D O I
10.1016/j.exmath.2006.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give here a full account of Markoff's celebrated result on badly approximable numbers. The proofs rely exclusively on the classical theory of simple continued fractions, together with Harvey Cohn's method using words in the free group with two generators for the determination of the structure of periods of the continued fractions of Markov irrationals. Appendix A gives a short self-contained presentation of the results on continued fractions used here and Appendix B gives short proofs of some results on the still open uniqueness problem for Markoff numbers. (C) 2006 Elsevier GmbH. All rights reserved.
引用
收藏
页码:187 / 213
页数:27
相关论文
共 16 条
  • [1] On the unicity conjecture for Markoff numbers
    Baragar, A
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01): : 3 - 9
  • [2] Bombieri E., 1995, COMPUTATIONAL ALGEBR, P137
  • [3] On a quantitative refinement of the Lagrange spectrum
    Burger, EB
    Folsom, A
    Pekker, A
    Roengpitya, R
    Snyder, J
    [J]. ACTA ARITHMETICA, 2002, 102 (01) : 55 - 82
  • [4] The uniqueness of the prime Markoff numbers
    Button, JO
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 9 - 17
  • [5] Markoff numbers, principal ideals and continued fraction expansions
    Button, JO
    [J]. JOURNAL OF NUMBER THEORY, 2001, 87 (01) : 77 - 95
  • [6] THE MARKOFF CHAIN
    CASSELS, JWS
    [J]. ANNALS OF MATHEMATICS, 1949, 50 (03) : 676 - 685
  • [7] APPROACH TO MARKOFF MINIMAL FORMS THROUGH MODULAR FUNCTIONS
    COHN, H
    [J]. ANNALS OF MATHEMATICS, 1955, 61 (01) : 1 - 12
  • [8] COHN H, 1972, MATH ANN, V196, P8, DOI 10.1007/BF01419427
  • [9] Gorshkov D.S., 1977, ZAP NAUCHN SEM LENIN, V67, P39
  • [10] Malysev A. V., 1977, ZAP NAUCN SEM LENING, V67, P5