Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation

被引:362
作者
Xu, Jing [1 ]
White, Tim [2 ]
Li, Ping [1 ]
He, Chongheng [1 ]
Yu, Jianguo [1 ]
Yuan, Weikang [1 ]
Han, Yi-Fan [1 ]
机构
[1] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Australian Natl Univ, Ctr Adv Microcopy, Canberra, ACT 2601, Australia
关键词
RAY-ABSORPTION SPECTROSCOPY; VINYL-ACETATE SYNTHESIS; GOLD-PALLADIUM ALLOYS; BIMETALLIC NANOPARTICLES; METHANOL REFORMATE; ENERGY SHIFTS; ADSORPTION; SURFACE; OXYGEN; RU/GAMMA-AL2O3;
D O I
10.1021/ja102617r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low-temperature CO oxidation over a compositional series of Pd-Au nanoalloy catalysts supported on silica fume was studied. Except for the pure metals, these materials invariably showed biphasic separation into palladium- and gold-rich components. Performance was optimal for a catalyst of bulk composition Pd4Au1, a mixture of Pd90Au10 (72.5 at. %) and Pd31Au69 (27.5 at. %), that was remarkably active at 300 K and more stable than a pure Au catalyst. For bulk materials dominated by Pd (Pd:Au = 16:1; 8:1; 4:1), the palladium-rich alloy fraction frequently adopted hollow sphere or annular morphology, while the gold-rich crystals were often multiply twinned. Quantitative powder X-ray diffraction (XRD) showed that under the synthesis conditions used, the Au solubility limit in Pd crystals was similar to 12 at. %, while Pd was more soluble in Au (similar to 31 at. %). This was consistent with X-ray photoelectron spectroscopy (XPS), which revealed that the surfaces of Pd-rich alloys were enriched in gold relative to the bulk composition. In situ Fourier transform infrared spectra collected during CO oxidation contained a new band at 2114 cm(-1) (attributed to linear CO-Au/Au-Pd bonds) and reduced intensity of a band at 2090 cm(-1) (arising from a linear CO-Pd bond) with escalating Au content, indicating that the Pd sites became increasingly obscured by Au. High-resolution electron micrographs (HRTEM) of the Pd-rich alloys revealed atomic scale surface defects consistent with this interpretation. These results demonstrate that gold-containing biphasic Pd nanoalloys may be highly durable alternatives for a range of catalytic reactions.
引用
收藏
页码:10398 / 10406
页数:9
相关论文
共 56 条
[1]   Supported bimetallic cluster catalysts [J].
Alexeev, OS ;
Gates, BC .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (08) :1571-1587
[2]   Ensemble effects in the coupling of acetylene to benzene on a bimetallic surface: A study with Pd{111}/Au [J].
Baddeley, CJ ;
Tikhov, M ;
Hardacre, C ;
Lomas, JR ;
Lambert, RM .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (06) :2189-2194
[3]   KINETICS OF CO OXIDATION ON SINGLE-CRYSTAL PD, PT, AND IR [J].
BERLOWITZ, PJ ;
PEDEN, CHF ;
GOODMAN, DW .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (18) :5213-5221
[4]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[5]   The influence of preadsorbed oxygen on the adsorption of CO on two-dimensional Pd islands on a Rh(111)surface [J].
Beutler, A ;
Sandell, A ;
Jaworowski, AJ ;
Wiklund, M ;
Nyholm, R ;
Andersen, JN .
SURFACE SCIENCE, 1998, 418 (02) :457-465
[6]   THE ADSORPTION OF OXYGEN ON GOLD [J].
CANNING, NDS ;
OUTKA, D ;
MADIX, RJ .
SURFACE SCIENCE, 1984, 141 (01) :240-254
[7]   Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy [J].
Chen, Ching-Hsiang ;
Sarma, Loka Subramnanyam ;
Chen, Jiurn-Ming ;
Shih, Shou-Chu ;
Wang, Guo-Rung ;
Liu, Din-Goa ;
Tang, Mau-Tsu ;
Lee, Jyh-Fu ;
Hwang, Bing-Joe .
ACS NANO, 2007, 1 (02) :114-125
[8]   Highly active surfaces for CO oxidation on rh, pd, and pt [J].
Chen, M. S. ;
Cal, Y. ;
Yan, Z. ;
Gath, K. K. ;
Axnanda, S. ;
Goodman, D. Wayne .
SURFACE SCIENCE, 2007, 601 (23) :5326-5331
[9]   The promotional effect of gold in catalysis by palladium-gold [J].
Chen, MS ;
Kumar, D ;
Yi, CW ;
Goodman, DW .
SCIENCE, 2005, 310 (5746) :291-293
[10]   ELECTRONEGATIVITY AND ELECTRON-BINDING IN GOLD ALLOYS [J].
CHOU, TS ;
PERLMAN, ML ;
WATSON, RE .
PHYSICAL REVIEW B, 1976, 14 (08) :3248-3250