Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces

被引:518
作者
Xu, Hong-Kun [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
LINEAR INVERSE PROBLEMS; CQ ALGORITHM; PROJECTION; SETS; OPERATORS;
D O I
10.1088/0266-5611/26/10/105018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The split feasibility problem (SFP) (Censor and Elfving 1994 Numer. Algorithms 8 221-39) is to find a point x* with the property that x* is an element of C and Ax* is an element of Q, where C and Q are the nonempty closed convex subsets of the real Hilbert spaces H(1) and H(2), respectively, and A is a bounded linear operator from H(1) to H(2). The SFP models inverse problems arising from phase retrieval problems (Censor and Elfving 1994 Numer. Algorithms 8 221-39) and the intensity-modulated radiation therapy (Censor et al 2005 Inverse Problems 21 2071-84). In this paper we discuss iterative methods for solving the SFP in the setting of infinite-dimensional Hilbert spaces. The CQ algorithm of Byrne (2002 Inverse Problems 18 441-53, 2004 Inverse Problems 20 10320) is indeed a special case of the gradient-projection algorithm in convex minimization and has weak convergence in general in infinite-dimensional setting. We will mainly use fixed point algorithms to study the SFP. A relaxed CQ algorithm is introduced which only involves projections onto half-spaces so that the algorithm is implementable. Both regularization and iterative algorithms are also introduced to find the minimum-norm solution of the SFP.
引用
收藏
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 1951, American journal of mathematics, DOI DOI 10.2307/2372313
[2]  
[Anonymous], 1966, COMP MATH MATH PHYS+
[3]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[5]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[6]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[7]  
Censor Y., 1994, Numerical Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[8]  
Censor Y, 2008, CRM SER, V7, P65
[9]   A unified approach for inversion problems in intensity-modulated radiation therapy [J].
Censor, Yair ;
Bortfeld, Thomas ;
Martin, Benjamin ;
Trofimov, Alexei .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10) :2353-2365
[10]   Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [J].
Censor, Yair ;
Motova, Avi ;
Segal, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1244-1256