Chitosan and its derivatives as nanocarriers for siRNA delivery

被引:15
作者
Al-Qadi, S. [1 ]
Grenha, A. [2 ]
Remunan-Lopez, C. [1 ]
机构
[1] Univ Santiago de Compostela, Fac Pharm, Dept Pharm & Pharmaceut Technol, Nanobiofar Grp, Santiago De Compostela 15782, Spain
[2] Univ Algarve, IBB Inst Biotechnol & Bioengn, CBME Ctr Mol & Struct Biomed, Faro, Portugal
关键词
Chitosan; Chitosan derivatives; Formulation parameters; Gene silencing; Nanocarriers; siRNA delivery; SMALL INTERFERING RNA; TARGETED GENE DELIVERY; NUCLEIC-ACID DELIVERY; MOLECULAR-WEIGHT; IN-VITRO; DRUG-DELIVERY; ANTISENSE OLIGONUCLEOTIDES; ANTIINFLAMMATORY TREATMENT; NANOPARTICLE FORMULATION; INTRAVENOUS DELIVERY;
D O I
10.1016/S1773-2247(12)50003-1
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The ability to specifically silence genes using siRNA has enormous potential for treating genetic diseases. However, siRNA instability and biodistribution issues still need to be overcome, and adequate delivery vehicles have proven indispensable in conveying siRNA to its target. Chitosan is a promising biopolymer for siRNA delivery, its interest stemming from its solely, biodegradability, mucoadhesivity, permeation enhancing effect and cationic charge, as well as amenability to undergo chemical modifications. Chitosan and its derivatives can be readily arranged into complexes or nanoparticles able to entrap and carry siRNA. Specific strategies have been adopted to improve chitosan-based vectors with regard to transfectability. However, further efforts cure required to verify their value and adapt them to enhance therapeutic output prior to clinical application. This review emphasizes the potential of chitosan and its derivatives to develop nanocarriers for siRNA delivery. The properties of chitosan that are significant for transfectability and the most relevant findings are assessed.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 124 条
[1]   Recent advances on chitosan-based micro- and nanoparticles in drug delivery [J].
Agnihotri, SA ;
Mallikarjuna, NN ;
Aminabhavi, TM .
JOURNAL OF CONTROLLED RELEASE, 2004, 100 (01) :5-28
[2]   Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications [J].
Alves, N. M. ;
Mano, J. F. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2008, 43 (05) :401-414
[3]   Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system [J].
Amidi, M ;
Romeijn, SG ;
Borchard, G ;
Junginger, HE ;
Hennink, WE ;
Jiskoot, W .
JOURNAL OF CONTROLLED RELEASE, 2006, 111 (1-2) :107-116
[4]   Delivery of siRNA from lyophilized polymeric surfaces [J].
Andersen, Morten O. ;
Howard, Kenneth A. ;
Paludan, Soren R. ;
Besenbacher, Flemming ;
Kjems, Jorgen .
BIOMATERIALS, 2008, 29 (04) :506-512
[5]   Targeted gene delivery to the lung [J].
Aneja, Manish K. ;
Geiger, Johannes-Peter ;
Himmel, Anne ;
Rudolph, Carsten .
EXPERT OPINION ON DRUG DELIVERY, 2009, 6 (06) :567-583
[6]   A Meta-Analysis Evaluating the Impact of Chitosan on Serum Lipids in Hypercholesterolemic Patients [J].
Baker, William L. ;
Tercius, Alix ;
Anglade, Moise ;
White, C. Michael ;
Coleman, Craig I. .
ANNALS OF NUTRITION AND METABOLISM, 2009, 55 (04) :368-374
[7]   Permeation enhancing polymers in oral delivery of hydrophilic macromolecules:: thiomer/GSH systems [J].
Bernkop-Schnürch, A ;
Kast, CE ;
Guggi, D .
JOURNAL OF CONTROLLED RELEASE, 2003, 93 (02) :95-103
[8]  
Blau S, 2000, CRIT REV THER DRUG, V17, P425
[9]   Chitosans for gene delivery [J].
Borchard, G .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 52 (02) :145-150
[10]   Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs [J].
Bragonzi, A ;
Boletta, A ;
Biffi, A ;
Muggia, A ;
Sersale, G ;
Cheng, SH ;
Bordignon, C ;
Assael, BM ;
Conese, M .
GENE THERAPY, 1999, 6 (12) :1995-2004