A Novel Adversarial One-Shot Cross-Domain Network for Machinery Fault Diagnosis With Limited Source Data

被引:17
|
作者
Cheng, Liu [1 ]
Kong, Xiangwei [2 ,3 ]
Zhang, Jiqiang [1 ]
Yu, Mingzhu [1 ,4 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mech Engn & Automat, Key Lab Vibrat & Control Aeroprop Syst, Minist Educ, Shenyang 110819, Peoples R China
[3] Northeastern Univ, Liaoning Prov Key Lab Multidisciplinary Design Op, Shenyang 110819, Peoples R China
[4] Angang Steel Co Ltd, Anshan 114021, Peoples R China
关键词
Fault diagnosis; Task analysis; Transfer learning; Data models; Training; Adaptation models; Training data; Adversarial domain adaptation; intelligent fault diagnosis; one-shot transfer learning; sample pairing; NEURAL-NETWORK; BEARING; ADAPTATION; MODEL;
D O I
10.1109/TIM.2022.3198486
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, methods based on meta-learning have been widely used in cross-domain fault diagnosis, and promising results can be obtained even with limited target training data. However, data scarcity problems can exist not only in the target domain but also in the source domain, which puts a damper on the meta-knowledge learning process since the source domain cannot provide sufficient source tasks. In this study, a novel adversarial one-shot cross-domain network named AOCN for fault diagnosis is proposed, which requires only a few source samples and as low as one labeled target sample per class. The main idea of AOCN is to learn domain invariant embedding and generate domain invariant prototypes without causing overfitting problems. AOCN consists of two modules: a feature generator and a sample-pair discriminator with four outputs. The optimization process is divided into three steps. The first step is the meta-learning of the feature generator. The second step is the pretraining of the sample-pair discriminator to distinguish four groups of sample pairs that are generated by the pairing strategy. The third step is the adversarial learning of the two modules to confuse the features between homogeneous pairs and the features between heterogeneous pairs, respectively. Experiment results on two datasets show that AOCN can achieve more satisfactory performance than the existing methods compared.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712
  • [2] Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments
    Xu, Nan-Xi
    Li, Xiang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [3] Class-Imbalance Adversarial Transfer Learning Network for Cross-Domain Fault Diagnosis With Imbalanced Data
    Kuang, Jiachen
    Xu, Guanghua
    Tao, Tangfei
    Wu, Qingqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] One-Shot Unsupervised Cross-Domain Person Re-Identification
    Han, Guangxing
    Zhang, Xuan
    Li, Chongrong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1339 - 1351
  • [5] A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis
    Chai, Zheng
    Zhao, Chunhui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1432 - 1442
  • [6] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Cross-Domain Open-Set Fault Diagnosis Based on Target Domain Slanted Adversarial Network for Rotating Machinery
    Su, Zuqiang
    Jiang, Weilong
    Zhao, Yang
    Feng, Song
    Wang, Shuxian
    Luo, Maolin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] A novel multiple-prototype and domain adversarial network for few-shot cross-domain fault diagnosis
    Shi, Peiming
    Dai, Siyu
    Xu, Xuefang
    Han, Dongying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [9] Cross-Domain Fault Diagnosis of Rotating Machinery Using Discriminative Feature Attention Network
    Jang, Gye-Bong
    Kim, Jin-Young
    Cho, Sung-Bae
    IEEE ACCESS, 2021, 9 : 99781 - 99793
  • [10] Intelligent Cross-domain Fault Diagnosis For Rotating Machinery Using Multiscale Adversarial Convolutional Neural Network
    Yue, Ke
    Li, Jipu
    Chen, Junbin
    Li, Weihua
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,