EXPONENTIAL STABILITY AND REGULARITY OF COMPRESSIBLE VISCOUS MICROPOLAR FLUID WITH CYLINDER SYMMETRY

被引:2
作者
Sun, Zhi-Ying [1 ]
Huang, Lan [1 ]
Yang, Xin-Guang [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Stat, Zhengzhou 450011, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2020年 / 28卷 / 02期
关键词
Exponential stability; micropolar fluid; cylindrical symmetry; regularity; GLOBAL WELL-POSEDNESS; BOUNDARY-VALUE-PROBLEM; LARGE-TIME BEHAVIOR; SPHERICAL-SYMMETRY; 3-D FLOW; CYLINDRICAL SYMMETRY; EXISTENCE; MODEL; SYSTEM;
D O I
10.3934/era.2020045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with three-dimensional compressible viscous and heat-conducting micropolar fluid in the domain to the subset of R-3 bounded with two coaxial cylinders that present the solid thermoinsulated walls, being in a thermodynamical sense perfect and polytropic. We prove that the regularity and the exponential stability in H-2.
引用
收藏
页码:861 / 878
页数:18
相关论文
共 50 条
  • [41] A shear flow problem for compressible viscous micropolar fluid: Uniqueness of a generalized solution
    Simcic, Loredana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6358 - 6368
  • [42] One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution
    Mujakovic, N
    Proceedings of the Conference on Applied Mathematics and Scientific Computing, 2005, : 253 - 262
  • [43] GLOBAL STRONG SOLUTIONS OF THE COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW WITH THE CYLINDER SYMMETRY
    Tao, Qiang
    Gao, Jincheng
    Yao, Zheng-An
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) : 2065 - 2096
  • [44] REGULARITY AND EXPONENTIAL STABILITY OF THE pth NEWTONIAN FLUID IN ONE SPACE DIMENSION
    Qin, Yuming
    Huang, Lan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (04) : 589 - 610
  • [45] Global classical solutions to the compressible micropolar viscous fluids with large oscillations and vacuum
    Zhu, Canze
    Tao, Qiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 28 - 53
  • [46] ON THE REGULARITY FOR WEAK SOLUTIONS TO THE MICROPOLAR FLUID FLOWS
    Agarwal, R. P.
    Alghamdi, A. M.
    Gala, S.
    Ragusa, M. A.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2024, 23 (04) : 558 - 569
  • [47] Nonlinear Stability of Rarefaction Waves for a Compressible Micropolar Fluid Model with Zero Heat Conductivity
    Jin, Jing
    Rehman, Noor
    Jiang, Qin
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) : 1352 - 1390
  • [48] Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model
    Huang, Lan
    Yang, Xin-Guang
    Lu, Yongjin
    Wang, Taige
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [49] On the Regularity for Solutions of the Micropolar Fluid Equations
    Ortega-Torres, Elva
    Rojas-Medar, Marko
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 122 : 27 - 37
  • [50] Stability and exponential decay for the compressible viscous non-resistive MHD system
    Dong, Boqing
    Wu, Jiahong
    Zhai, Xiaoping
    NONLINEARITY, 2024, 37 (07)